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CURVE FITTING, INTERPOLATION & EXTRAPOLATION

AN INTERACTIVE APPROACH
S. W. ANWANE

Department of Physics, Shri Shivaji Education Society Amravati’s

Science College, Congress Nagar, Nagpur 440 012, India

Experimental data are often seen graphically by analytical minds. Then

the desires for its fitting into curve and line is obvious for learning its
trend and analysis. Interpolations and permitted extrapolations are also
required for various purposes that include calibrations and extreme

interactive capabilities, graphical output, interpolations, extrapolations,

quasi-continuous, least square, best fit, caliberation

Abstract

analysis
Keywords
Introduction

Numerical problems in

-theoretical physics was the domain ,
of large computers, until a few years

ago. Now-a-days, personal
computers have reached the power
at par with large computers of early
sixties. Apart from their high
computational performances,
personal computers  offer
interactive capabilities and rapid
graphical output of results. Thus,
the personal computers offer us a
wide field of possibilities in
education and research. The
present work is an attempt to fit a
continuous experimental data
points into the leastsquare
equations of five different kinds.

(1) Equation of a Line:
y=mx+c

(2) Exponential Function:
Yy = aebx

(3)Logarithmic Function:
y=aln (x+ b

(4) Power Function:

Yy = axb

(5) Polynomial Function (Order 3):
y=fx=a+axtax+tax

These equations are then capable
of generating interpolations and
extrapolations between

and beyond data points (if feasible).
The perfect-ness of the equation
with data can be judged from
deviations e.g. the equation (out of
five) for which standard deviation
(SD) is minimum is closest to the
data and is the best-fit-equation.
Visualizing a graph from data
points and generated equation with
quasi-continuous interpolated data
gives an exciting glimpse. The C++
programme sample example
depicted in the Appendix will help
the users to take a ride on their PC
with their experimental data and an
equation.

Theory of Approximation by
Least-Squares

1. Discrete data and equation of
least-square line .

The general equation of a
straight line with slope m and y-
intercept cis:
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y=mx+ c(l)
The Least-Square Principle (Linear)

The basic idea of choosing
a linear approximation p(x) to give
function y(x) in a way which
minimizes the square of the errors
(in some sense), was developed first
by Gauss.

There are several variations,
depending upon the set of
arguments involved and the error

measure to be used.

First of all, when the data
are discrete we may minimize the
sum

N
Z x—c
0

for given data (xi, yi) and

parameters to be found are m and
c. The mathematical condition

for solving set equations (2) for m
and c is that the set of equations
should be two or more. That is, the
data points for which we are finding
equation of a straight line should

be at least two ore more. In equation
(2) Sprobably cannot be made zero.
The idea of Gauss is to make S as
small as we can. Mathematically,

oS oS
at = —=0,2=

om oc
function S will have minima . The
standard techniques of calculus
then lead to the normal equations,
which determine the coefficients.
These equations are

Othe square

ms -cs =t
2 1 1

ms -cs =t -(3)
1 0 0
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N L
k =
where S = fo >l —Z YiXi
i=0 i=0

.This system of linear equations
does determine the m and c
uniquely, and the resulting
coefficients do actually produce the
minimum possible value of S. For
the case of linear polynomial

plg =c+ mx

The normal equations are
easily solved and yield slope and y-
intercept

_ Soly =Sty Sl =84

=
S45, L weer(4)

2
oy — 8"

2. Discrete data and exponential
function

The general exponential equation for
relating x and y be:

¥, =ag™ . (5)
The Least-Square Principle
(Exponential)

logy =loga + bx

First of all, when the data are discrete
we may minimize the sum

N
S =Z[logy,. ~loga-bx,T

i=0

for given data (xi, yi) and
parameters to be found are a and
b. The mathematical condition

for solving set equations (6) for a and
b is that the set of equations should
be two or more.

In equation (6) S probably cannot
be made zero. The idea of Gauss is to
make S as small
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as we can. Mathematically, at

Os Os
—=0,—-=0the square function

Oa ob
S will have minima .

The standard techniques of
calculus then lead to the normal
equations, which determine the
coefficients. These equations are

logas + bs =t

0 1 o
log as + bs2 =t ... (7)
1 1

N N
where 3" 141, = 3 log(y,)x!
i=0 i=0

This system of linear equations does
determine the a and b uniquely, and
the resulting coefficients'do actually
produce the minimum possible value
of S.

The normal equations are
easily solved and yield slope and y-
intercept

S,bh = Silo Syly —8ify
b=————2 JA=E5p ———— Iy
8,8, =81 §,8, =81
3. Discrete data and logarithmic

function

The general exponential equation for

relating x and y be:

y=alogx+b C))

The Least-Square Principle
(Logarithmic)

y =a loghbi+x
Firét of all, when the data are discrete
we may minimize the sum

N

S=Y [y, —alogx,~bF __(10)

i=0

for given data (xi, yi) and parameters
to be found are a and b. The
mathematical condition for solving
set equations (10) for @ and b is that
the set of equations should be two or
more. In equation (10) S probably
cannot be made zero. The idea of
Gauss is to make S as small as we can.
Mathematicall & 0% 0
athematically, at 2a " b

the square function S will have

‘minima . The standard techniques of

calculus then lead to the normal
equations, which determine the
coefficients. These equations are

bs + as =t0
o 1

bs +as =t ..... (11)
1 2 i

where

N N
S=Y (ogx)’,t, =) y(logx)
i=0 i=0

This system of linear equations does
determine the a and b uniquely, and
the resulting coefficients do actually
produce the minimum possible value
of S. '

The normal equations are easily
solved and yield slope and y-intercept

5.1 — it Sl Sk,
a= D= 7 .. (12)

2
5,8, =87 8,8, =8

4, Discrete data and Power
function

The general power equation for
relating x and y be:

y=axb = (13),
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The Least-Square
(Logarithmic)

Principle

Yy =log a + blog x

1 1
First of all, when the data are
discrete we may minimize the sum

N
S =) [y, —loga+blogx,T.t, (14)
i=0
for given data (xi, yi) and parameters
to be found are a and b. The
mathematical condition for solving
set equations (14) for a and b is that
the set of equations should be two or

more. In equation (14) S probably
cannot be made zero. The idea of
Gauss is to make S as small as we can.

os 0 Os
da ' 0b
the square function S will have
minima . The standard techniques of
calculus then lead to the normal
equations, which determine the

coefficients. These equations are

Mathematically, at =0

logas bs =t
o 1 0

logas bs =t (15)
1 2 1

where s
k

-2

N N
S=Y (logx,)*,t, = log y,x(log x,
i=0 i i=0

This system of linear-equations does
determine the a and b uniquely, and
the resulting coefficients do actually
produce the minimum possible value
of S.

The normal equations are easily
solved and yield slope and y-intercept

212

8 L— 8 Sslo— 81
= el 120 ’a:exp( 2°0 ]21
S(JSZ_SI S()SZ_SI

....(16)

5. Discrete data and Least-Square
Polynomial (Non-linear)

b

An expression to a general
polynomial of order m (our case is
m=3) is

y=f(x)=a,+ax—a,x* +..+a,x"

m

=Dax a7
i=0

In generalizing the problem of linear
polynomial, setting derivatives of S
relativeto a ,a ,a ,a ...a tozero.
0 1 2 3 em
produces m +1 “equations for
polynomial
k . 2
oS 2ixj [y, —a,—ax, —a,x

0a, i=0

-.—a,x"]=0...(18)

where k = 0,...,m . Introducing
symbols

N N
k k
Sy =in’tk :Zyixi these
=0 i=0

equations may be

re-written as (18) and are called as
normal equations.

sa+sa+t..tsa=t
0 0 1. 1

m m 0
sa+sa+....+s a =t
1 0 21 m+l m 1
--------------------------------- (19)
s a +s a F..tsS a =
m 0 m+1 1 2m m m
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Solving for the coefficients
ai we obtain the least square
polynomial. There is a unique
solution and that it minimize S. For
small integers m, may be solved
without difficulty.

However for large m the
system is badly ill-conditioned.
Solution to such system does
exist but is beyond the scope now.
Therefore, while accepting the data
it has been asked in the programme
that user should provide at-least
four data points as we are
evaluating four coefficients a ,a ,a
,a to part from mathematical’ ill?
condition.

Note: the number of data points N
used for least-square processing
and degree of polynomial m desired

should always maintain relation N > m .
Simultaneous Linear Equations

Simultaneous m+1 linear equations
(19) raise in m unknowns can’be
solved by Cramer’s delta rule.

If the (mxm)determinant :

SO Sl SZ Sm
Sl SZ S3 Sm+]
A=IS, S Sy Sz
20
Sm Sm+] Sm+2 S2m

is not zero, then solutions of equations

(3) is given by Cramer’s rule as
. D, b B
o r

m+1

213

where the (mxm) determinant ,

SO SI s Sl—l tO Sl+l Sm

S; SZ ! tl Sl+2 Sm+l

D=8, 8 o Su b Su o S

Sm Srml e S/+m tm Sl+l+m SZm
....... (21)

Thus Dl is the same as D except t's
replacing s’s in the Ith column.
Programming in Borland Turbo C++
The programme is devised to accept
a number of data points (i) as
desired by the user and ‘
stored in arrays x{i] and y[i}. Using
the general polynomial equation of
the form

2 3
y=(x=a +q xtax +a x
0 / 2 3

we can generate / number of equations
out of i data points which are stored
in array.

Now these i equations are solved
simultaneously fora ,a ,a ,a .The
following summations are éstimated
using for loop:

S 2, Y,

1

3" x[nl,
Y Yl Yl
Solnl, Y ylnlxdnl

S ylalxxinl, Y yinlx T,
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and assigned with a array a[p][¢] and
b[p] as:

2 Dimensional

allll=1;  afl][2]= 2 snk alB1=Y 2} allf4]=Y ¥l

1

al21(] :'ZA Zx [n];
[3]=Zx nl, a[2][4]= Zx
a[3][1] = sz[n]; a[3][2] = Zx4[n]

1 1

i

ABIB1= Y 'l aBi]= Y+l

1 Dimensional

i

b= ylnl,  b[2)=Y ynlxxin)

1

Zy[n] xx[n]", b[4]= Zy[n] X X[n]

Then the followmg S determinants D, D , D D D are solved
for a,a,a,a as: o’

al]ll]  a[1][2] a[l](3] a[l1][4]
1 al2](2) al2)[3] a[2][4]
11 aB3][2] 4[3][3] a[3][4]),
1 al4][2] o[4][3] q[4][4]

b1l all][2] afl][3] a[1][4]
_pl2] al2][2] a[2][3] a[2][4]
“ P31 aBl2] al3103] al3][4]
bl4] a[4][2] a[4](3] a[4][4]
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all]l]  b(1] a1][3] a1][4]

_jal210] b[2] al2](3] al2][4]
a[3]1] 53] a[3][3] a[3][4]
a[4][1] b[4] a[4](3] a[4][4]

allllll afll[2] 511 al1][4]
_lal2l] al2][2] B[2] a[2][4]
“ lal3101] af31{2] B[3] al31[4]
al4]l1] a[41[2] b[4] a[41[4]

a1l all][2] a[1](3] (1]

L\ _[a2I al2](2] €l2)3] (2]
“TlaBI) al3l2] @33l 3]
a[41[1] a[41[2] a[41[3] b[4]

Using Cramer’s rule, the coefficients can be calculated as:

A A A A

ay a.= g a. = a3 a., = a3
b A e R e

The case of polynomial is discussed above in detail explains the methodology.
For rest of the four equations the summations are to be evaluated as
discussed in theory. Rest of the treatment is alike.

a, =

(Note: Array assignment can be conveniently used for solving 4x 4 determinant
and later same solution can be used for replacing columns by a[p][1]=b[p],

a[pl[21=b[p], alp](3]=blp], alp][4]=b[p] for calculating A ,A ,A A )

a ao 3al (x’

Thus, the desired polynomial y =f(x) = a +a x+a X +a x is known as
3

are known.
Checking the correctness of Best-fit Equations from Deviations

The degree of correctness of predicting a y value for any x can be
systematically understood from deviations

We have already entered points (xi,yj) in array x{i], y[i]. Now, we can calculate
array yc|i] from polynomial and immediately find deviations in array be
equation d[i]=yli]-yc[i].
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The Mean Deviation (djcan be found by summing all deviations together

using a for loop and averaging it out as:

— .
d;Zd[z]

....(9)

The Standard Deviation(c ) can be similarly found by summing all deviation
squares together using a for loop and averaging it out its root as:

T
o= ;Zi:d [1]

The statements used in
programme are depicted in
Appendix-I.

Conclusion

Programme devised is
empowered to accept any number
(32k) of data points for finding
Least-Square equation of any type
of the prescribed five equations. The
generated equation is capable of
interpolation and extrapolations
which is often required for
introspection. The polynomial
generated can be the boon for fine
calibration when linear fitting affect
accuracy due to a small non-
linearity in the data. The present

programme can interpolate/
extrapolate which can minimize
error to a considerable extent and
also suggest kind of equation that
best-fits data point which is evident
from standard deviation. Deviation
data displayed at last is indicative

‘of the degree of accuracy claimed
for the particular case. The

coefficients generated using
programme can be used for
theoretical interpretation and
assimilation of the mechanism of
correlation between the parameters
on respective axis. Thus, the
programme which is a tool for
finding Least Square equation is
useful for a variety of causes.
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In put how many data points i=
v <
1\
In put coefficients (xn, yn) n=n+1
\L /

No

Yes

Evaluate summations s t and solve for
k k
constants as per CASE (1-5)

S |-

Evaluate Deviations: d[i]=y[i]-ycli], d=

)
> dld, o= /%Zdz[i]

{

Print equation and 7,0

Fig.1: Flow Chart of the Programme
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