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COMPUTATION OF 2D POTENTIAL FIELDS: A PROPOSED
APPROACH FOR IMPROVED VISUALIZATION

S. W. ANWANE & R. S. ANWANE

Department of Physics, Shri Shivaji Education Society Amravati's Science
College, Congress Nagar, Nagpur

+ Department of Applied Physics, Tulsiramji Gaikwad - Patil College of
Engineering, wardha Road, Nagpur

Abstract The capability of personal computers now-a-days is having a great line of

difference with compared to the one we use to have in early sixties. This
has a great impact on its computing utility. The present work throws
light on the nature possibilities to explore them in a collective way for

education and research for visualization.

Keywords Computation, Electric

Introduction

The solution of numerical
problems in theoretical physics
was until a few years ago the
domain of large computers. In
recent years, personal computers
have reached the power at par with
large computers of early sixties.

Apart from their high
computational performances,
personal computers  offer

interactive capabilities and rapid
graphical output of results, which
were not available even in the
computers twenty years ago. Thus,
personal computers offer us a wide
field of possibilities in education
and research. The present work is
an attempt to visualize some of the
two dimensional potential fields
using personal computer thus
opening a way to visualization
problems through a theoretical
approach.

Computation of 2D Electric
Field-An approach to practical
problem

Electrostatics and Magnetostatics
are usually presented in a way
Maxwell's equations are derived.
With the aid of example one is
introduced to their form of solution.
The examples include from plate
condenser to field created by
current carrying conductor. The
homogenous fields can be
imagined, however picturing the
penetration factor of the control
grid of electronic valve or CRT, field
causing acceleration and focusing
in CRT takes strain. The present
work throws light on the portion
where the imagination succumbs to
mere mathematical understanding.

In this section we shall deal with
the electric field in vacuum
pertaining to the regions and

boundaries where Laplace's
equation
v V=0 (1)

is obeyed followed by some typical
examples for hands on experience
and their interesting results in the
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picture form along with the well-known equations. ,
(I) Formulation of the problem 2D Cartesian Coordinates

The boundary conditions we specify for the region in which the
equation is to be solved.

V=0forx=0,y=ay=0
and
V =100 voltsfor x = a

The practical situation may be raised from the three conducting
plates in the plane V' =0, forx =0, y = g, y = 0 maintained at potential

V' =0 and an isolated plate in the plane x = g bearing ¥ =100 volts.
Now one seeks potential function V(x, y) in the region bounded by the

plates 0 < x,y <a.

y=a,V=0 volts

i x=a,V=100

y=0,V=0

Fig.1 Geometrical Sketch of the accelerating anodes

The solution of Laplace's equation (1) is uniquely determined in the closed
volume, when the potential is specified over surface of the volume. The
volume in which we wish to compute the potential is still open.

(i) Discretisation of Laplace's equation
For numerical solution of Laplace's equation VQV(x, y) = O we shall
approximate V(x, }') on the two dimensional grid of points with constant

mesh width h. Instead of function V(x, y) consider a matrix (V,k) of

function values.
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% = ik, y, = kh
Vi = V(xi’yk)

Since the shape of electrodes chosen is simple, it makes easy to fit
in the grid. Only we have to choose h so that the dimension of square a is
integral multiple of h.

In order to solve the Laplace's equation (1) on this grid, we have to

S

first discretise the differential operators Pl 6y2 '

2)

Discretisation
QI/_ _._I/I —VO QK_ lVo —V3
x|, h x|, h
| _or
a2V;ax +h ox x—h=I/l_Vo—Vo+V3
o’ h h?
ory _or
Similarly, o’V _ W W o el e
ay2 h h2

Combining last two relations with (1), we get,

oW oW e V,+V,+Vi+V, -4V,
+ i

2
v V = ax2 6y2 hZ = O
=]
:mmn=ZM+n+n+m) (3a)
n generalized notations Vi ='1‘ Viiat Vs Vi, + Vi (3b)
! 4

(ii) Iteration

Employing a grid on the physical problem of dimension h and
estimating the potential at central point using four specified boundary
points as depicted in the Fig.2.
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=0

(XiYie1)

V3

-0 (Xi.1,Y4) (XY (Xien,Y) V=100 volts

(XiYke1)
Vi

V=0

Fig.2 Calculation of potential by approximation formula

For simplicity consider a square region with conducting boundaries
as shown in the Fig. 1. The potential on right hand side conducting boundary
is 100 volts and that of remaining sides zero. The problem is two dimensional
and the sketch is cross section of the physical configuration. The region
bounded by these four plates is divided into 16 squares, and some estimate
of the potential be made at every corner before applying iterative method.
Better the estimate, shorter the solution, although final result is
independent of these initial estimates. Reasonably accurate values could
be obtained from rough curvilinear-square map, or equation (3) could be
applied to the large squares. At the center of the figure the potential estimate

1 1
L Z(V1 A SN Z(100 +0+0+0) = 25.0 The potential may

now be estimated at the centers of the four double sized squares by taking
the average of the potentials at the four corners or applying (3) along the
diagonal set of axis. For the right hand side double squares, we select the
potential of 50V for the (the average of 100 and 0), and then

1 .
1 (50 +100 +25 + 0) =43.8 and for the left hand side double square

—3(0 + 25 +0+0)= 6.2 And so on.
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V = 100volts

V=0
Fig.3 Calculation of potentials in 16 sub square corners

Mathematical Treatment-Solution to Differential Equation by
Variable Separation

Let the functional dependence we seek be expressed as a product

of two independent functions as V(x, y): Vl(x)Vz(y) Therefore, the
Laplace's equation reduces to,

L o)1 o) _

nie) & omb) ot
" (x) = Acosh(cx)+ B sinh(cx), Bly)=C cos(cy)+ D sin(cy)
V=1 (x)V2 (y) = lA cosh(cx) + B sinh(cx)JlC cos(cy) +D sin(cy)J
¥V &k sinh(cx)sin(cy), Choose V, =BD,A=C=0 (4
V=10 for y= 22—n
& ¢
V=0forx=0

The equipotential surface for k volts is
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] k
(cy) g, v, sinhicxi LY

Usually the discussion is given up without understanding the
behavior of the equipotential surface and field nature. With the aid of
Waterloo Maple 8.0 we can see the equipotential surface as depicted in the
Fig.4 against simple commands depicted herewith.

>contourplot (sinh(x)*sin(y),x=-3..3,y=-3..3, filled = true,

coloring = [white,blue])

Fig.4. Equipotentials sketches of equation (5) in Maple 8.0

The knowledge of the potential is a key to other related important
parameters/information such as:

Electric field strength using E = -VV
Density of flux D = ¢E

(6)

Evaluate the density of flux on boundary surface D = D, = D, a,,

Recognize surface density of chargep, = D,,

Estimate total charge on the boundary surfaces O = Hp S

Surface
9

The capacitance C = — —

o
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Respective substitution will
enable to estimate parameters
listed in (6) for the given
configuration of the boundary
condition and field.

Thus, the method of iteration
exercised manually or even with aid
of a small FORTRAN or C
programme will lead to number of
data points with regards to
selection of h. The locus of points
holding same potential will lead to

hand to the potential of -1000V.
One seeks the form of potential

V(x, Y, Z) in the region between

the plates and tubes. If the potential
is known as a function of position
coordinates, then other related
important parameters/information
such as E, D, p , Q, C using (6)
can be found.

The solution of Laplace's equation
(1) is uniquely determined in the

Fy

F

Fig. 5 Geometrical Sketch of the accelerating anodes

what we call equipotential and is
resembling to what is achieved
through Maple.

(IT) Formulation of the problem
2D Cylindrical Coordinates

In this discussion we choose the
boundary condition suitable to
construct an electrostatic lens. As
depicted in Fig. 5 it is a cylindrical
metal tube with radius is
interrupted by a flange .

The flanges form a plate
condenser with two annular plates
Fl1 and F2 at a separation of
distance 2d to which two pieces of
tube R1 and R2 are attached. Let
the right hand flange be charged to
a potential of 1000V and the left

closed volume, when the potential
is specified over surface of the
volume. The volume in which we
wish to compute the potential is still
open. Clearly to the far right and
far left of the flanges we

shall find V] =+1000V and

V, = -V, = -1000V, respectively,

in the tubes. The potential field will
change between flanges and in the
far left and far right it will remain
constant. Moreover, the potential
field will have axial (or say
Azimuthal) symmetry which will
reduce the coordinates from 3 to 2
if we employ the Cylindrical
Coordinate system for this
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mathematical treatment. Let the axis of the tubes is z-axis. The coordinates
x and y are replaced by P and @ where p denotes distance from the z-
axis and @ azimuthal angle around z-axis. Thus the Laplace's equation
in cylindrical coordinates takes form as:

VWV =

16[8V)+15V oV ol b

pop\_ Op

Employing the azimuthal symmetry condition, the potential field will be
independent @ of , we get

ol
TF= +———+‘;—? V(p,(P)=0 (8)
op> pop oz

p’ 0o oz°

Moreover the configuration is symmetric about the plane . It is
therefore sufficient to solve (8) for the shaded region in Fig.6.

te p

%//%/////

Fig.6 Shaded portion is symmetric about z = 0 and @ .

lo

(i) Discretisation of Laplace's ejuation
For numerical solution of Laplace's equation we shall approximate V(p, z)
on the two dimensional grid of points with constant mesh width h. Instead

of function V(p, z) consider a matrix (V,k ) of function values.

Z, =i, p, =kh
9
Vi = V(prk) ©)

Since the shape of electrodes chosen is simple, it makes easy to fit
in the grid. Only we have to choose h so that the tube of radius r and the
semi-distance of flange d are integral multlple of h.

o
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In order to solve the Laplace's equation (9) on this grid, we have to
AT LI
first discretise the differential operators a—p 8p2 ' 557

Note: A simple approximation formula for numerical calculation of the
first derivative of a function can be obtained from the definition of derivative:

g (x)s lim f(x = h)_ f(x)

h—0 h

The transition to the limit h — 0 can not be achieved on computer.
Instead, we can use a small, but finite, value for h. Thus we obtain a

formula.

7(e)= L =A, o)
h
Unfortunately, this derivative gives us no estimate for the error
term O(h) . We can however, obtain an analytic expression for the error in
simple manner. For this we expand the function in a Taylor series; in
what follows we shall always assume that the function f{x) is differentiable
a sufficient number of times. We obtain

P+ 1) = 1)+ )+ 2 o) )

Substituting above equation in the last one we get

o(n) = —gf”(x)+ﬁ6—f”’(x)+...

On computer one must not choose h too small, since below certain limit
the rounding error becomes large than the result. One therefore seeks an
approximation formula for which the errors go to zero with a high power of
h. In the present this can be easily achieved. We subtract Taylor series for

f (x + h) the Taylor series for f (x— h) , and divide the difference by 2h to

obtain approximation formula:

7= 28 h)z_hf(x =), o) @)

with the error term

0(h2)=—%f”’(x)+...
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And similarly,

71(x) = £l +n)+ f(x—h)—2f(x)+0(h2)

e (b)
with the error term
oln?)- _.’g_ff'f(xp

(@) and (b) are known as two point formula for first and second
derivative. 3

f(x)= f(x+h)2_hf(x_h)+0'(h2)
f"(x): f(x+h)_f(x*h)—2f(x)+0”<h2)

h2

ror O' (1) = ’% )+, 0 () = f_z 7).

Using above approximations

vy :hl_z[wp+h,z)+V(p_h,z)+V(p,z+h)+V(p,z_h)_w(p, )

+%2ih[V(p+h, 2)+V(p-hz)|+0lr?)=0

Applying relation (9) and neglecting error terms O(h2) , multiply

the equation by h2 and so obtain an approximation of Laplace's equation
on grid for k>0

21_k (Vi.k+] i Vi.k—l ) =4 (15

(V',k+l e Vi,k-l + Vi+1,k + Vi—l.k - 4Vi,k)+

1
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for k = O1i.e. for the grid points on the axis of symmetry (10) is not valid. For
these points we have to formulate a special equation. The equation is most
simply obtained by first converting back to Cartesian coordinates x, y, z
and using approximation formula.

V'V y,2z) =

1 V(x+h,y,z)+ V(x—h,y, z)+ V(x,y+ h,z)+ V(x,y— h, z)

i -0
7|47, y,z + B)+ Vxy,z = )= 67 (x, y, 2)+ Or?) @i

We wish to apply equation to the axis of symmetry and according to set

x = y = 0Now we return from potential function V(x, ¥, z) in Cartesian

coordinate system to the function V(p, (l)) in Cylindrical coordinates. The
first four function values on right hand side are all equal, namely equal

to V(h, z). If we neglect O(hz) and use relation (9) we obtain so called axis

formula.
4Vi,1 + Vi+1.o + Vi—l,O - 6Vi,o =0 (12)

The above equation (12) is analogous to (3) and may be exercised
for iteration and graphical visualization manually (or through a small
programme in FORTRAN or C).

ii) Method of Successive Over-Relaxation:

If one writes down (10) for all interior points of the grid and (12) for
all the points on axis of symmetry, then one obtains a system of linear

equations from which in principle the matrix (V,j )can be calculated. Since

we are to calculate many function values , however, this system of equations
has a high dimension. The usual method for solving system of linear
equations, such as the Gaussian elimination method, is no longer suitable
for the solution of the problem.

The system of equations (10) and (12) however, has one peculiarity:
each point is linked only with the directly neighboring points. If we represent
Laplace's operator as an enormous matrix this matrix is almost empty:
most of the elements are zero. For such a problem method of successive
over-relaxation has been developed.

The system of linear equations is solved by iteration:

(i) One postulates an approximate solution.

(ii) From this one calculates by means of a formula a better approximate
solution.
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(i) One test whether improved approximate solution fulfill a quality
criterion.

For 1: For the known potential values in the interior region of the grid
and on the axis of symmetry, one postulates the value which one feels to
be reasonable. The method of successive over-relaxation converges even if
one postulates a constant value for V by judicious choice one merely
economies in iteration steps.

For 2: For each point (z’, k)one after the other, in the interior and on the

axis of symmetry, one applies (10) and (12) to calculate of a potential U at

the point (i, k)from potential values at the neighboring points.

i
8k

_1_ (I/I,k+1 + V'.k—l + I/i+1,k i I/l—l.l\’)+

4 i (V/,k+1 - Vi.k—l) k>0

(13)

i

i %(Vﬂ,k el VL 4I/i,k+1)' k=0

The improved approximate solution at the point is calculated by
means of formula:

it +co(U—V,f’k"’), 1<o<?2 (14)
The constant is chosen so that one obtains the fastest possible

convergence. We shall now consider this in more detail. The V., are
represented by merely one array of numbers in the memory. Whenever a
new value of V,, is calculated, the old value is over written by the new.

The order in which (14) is applied to the point of grid is arbitrary.
For 3: When elements of the matrix of the potential values (Vi_k) are no
longer changing i.e.

Vi =V (15)
then the matrix of the potential values V,, satisfies the discretised Laplace's

equation with the specified boundary condition. The quality or convergence

criterion is that at no point (z', k) does V" by more than specified small

value £1In our example we shall specify £ = 1077 V, = 107V

The peculiarity of the method is the parameter @ in (14). If one
sets @ =1 , then one simply replaces @ = 1by U. From (13) one can see
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that U is calculated only from potential values at the neighboring grid
points. At each application of (14), therefore, the information originating
from the boundary values can only propagate by one mesh width. The
propagation of information has a certain similarity to a diffusion process.

With ¢ =] the approximate values VLk move slowly and monotonically in
the course of iteration towards the respective end values. This process can
be accelerated by setting p > 1This is known as over-relaxation, in contrast

to a relaxation with ¢ <1 If a too large value is chosen for @ then the

oscillation and instability set in. It is known that, ¢ > 2 always leads to

instability in the method shown here. A suitable value for @ is obtained by
trial. It is difficult to predict theoretically the most suitable value. However,
it is known that too large value of @ converges rapidly becomes worse, so
it is better to begin with smaller value of @ We shall replace the semi-
separation distance of the flanges d and radius r by dimensionless integers

mand n, m=—, n=—

h h

iii) Mathematical Treatment-Solution to Differential Equation by
Variable Separation

Let the functional dependence we seek be expressed as a product

of two independent functions as V( 8 z) =V (p)V2 (Z)Therefore, the Laplace's
equation reduces to,

1 (& 18 (o) = A I
) ae® “pap) 77 N o
Vi(p)=4,7,(cp)+ B,Y, (¢p). V,(y)=Ccos(cz)+ Dsin(cz)
v =V, (pW,(z) = loco +a,p+a,p’ +o,p’ + oc4p4[C cos(cz) + D sin(cz)|

V( ,z) — Dsin(cz)loco +a,p+o,p’ +a,p’ + a4p4l
Choose C = 0 (17)
The equipotentail surface for k volts will be:

Dsin(cz)[oco +o,p+a,p’ +o,p’ + oc4p4J= k (18)

Note: Here the Bessel function contains a series of constants which are
interdependent and expressed collectively as associated with even and odd
powers in following manner.




S. W. ANWANE & R. S. ANWANE 110

c c
a, 57(10, O 3—20'1
CZ c2c2 c2 02c2
g Tt % TE
c? cicic? c? clc’c?
Oy =—50, =———0, O, =

62 624727 72 %s = q2smr N

(The above set of equations for ¢ 's may be obtained 1f ( ) z s

o, %
= Znanpn_l and gzl' T Zn(n = l)ocnp” i equation (16)).

With the aid of Waterloo Maple 8.0 we can see the equipotential
surface as depicted in the Fig.7 against simple commands depicted. Here
we have preferred all constants as unit for depicting nature equipotential
surfaces.

The knowledge of the potential opens a key to find other related
important parameters as mentioned in (6).

contourplot((1+(x"2+yA2)A(1/2)+(xA2+yA2)+(xA2+yA2)A(3/
2)+(xN2+y~2)A2)*sin(x),x=-3..3,y=-3..3,filled=true,
coloring=[white,blue]);
contourplot3d((1+(xA2+yA2)A(1/2)+(xA2+yA2)+(xA2+yA2)A(3/
2)+(x"2+y~2)A2)*sin(x),x=-3. 3,y—-3 3,filled=true,
coloring=[red,blue]);

Fig 7. Equipotentials sketches of equatlon (18) in Maple 8.0
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Families of Equipotential Surfaces

In this course of discussion of the above specific problem it would
be very meaningful to look in to a very general approach to be exercised in
the beginning while dealing non-routine problems-a test whether the family
of equipotentials exits?.

If the potential function V(x, V, z)is a solution of Laplace's, the one-
parameter system of surfaces

V(x, A z) —F (20)

between functions Vand f. Differentiating (19) and (20) partially with respect
to x we obtain the result

o _ory

o of ox 1)
and the relation

o' _OF(y\  oF S

a?  oft\ax)  of ox (22)

From which it follows that

vy = F () + Fr (s (23)

Now in free space, V?)/ = () so that the required condition is that

Voo E0)
vy FU) 2

Hence the condition that the surfaces (19) forms a family of equipotential

Vif

surfaces in free space is that the quantity ( f)z is function of f alone.

\%

If we denote this function by X(f)then the equation (24) may be written as
d’F
dr?

From which it follows that

ar

— =0
df

+f)

£ gerk o)
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K= AJ.exp(— J.x(f)lf}lf + B (25)

where A and B is a constant may be evaluated from the boundary
condition.

Conclusion

With the little information that the potential is function of two
variables we have started with the problem. Then we have fixed some
boundary conditions in simple possible way and inferred many details of
the field along with its visualization. The present generation of personal
computers thus can be explored in visualization of fields and can emerge
with highly interactive methods in education and research.

Appendix-1
Treatment to some differential equations in Maple 8.0
> PDE := 1/V1(x)*diff(V1(x),x,x)=-c"2;

2

> ans := dsolve(PDE);
ans =V1(x)=_Clsin(cx)+ C2cos(cx)
> PDE :=1/V2(y)*diff(V2(y),y,y)=c"2;

dZ
0 V2(y)
PDE:=————=¢"
V2(y)

> ans := dsolve(PDE);

ans :=V2y)= Cl e o ) g

>

> PDE := 1/V1(rho)*(diff(V1(rho),rho,rho)+1/rho*diff(V1(rho),rho))=c"2;

d

d- dp
;\fl(p)]+—~—

_ 5
— Vi(p)
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> ans := dsolve(PDE);

ans :=V1(p)=_CI Bessell(0, pc)+ C2BesselK(0, pc)
> PDE := 1/V2(phi)*diff(V2(phi),phi,phi)=-c/2;
>
d2
— V2(¢)

_de’ S
ADES— ot

> ans := dsolve(PDE);
ans =V2(¢)= Clsin(cd)+ C2cos(c )
> PDE := 1/V1(0)*(diff(V1(r),r,r)+2/r*diff(V1(r),1))=c"2;

d
v 2 ;,"le(r)
—2V1(r) +
ppE =" ¢
E VI1(r)
> ans := dsolve(PDE);
ans =VI(r)= el Slfh(c 7} + L corsh(c 2.

> PDE := 1/V2(theta)*(1/r 2*diff(V2(theta),theta,theta)+cot(theta)/
rA2*diff(V2(theta),theta))=-c"2;

d? d
EW(G) cot(G)(—(—l@VZ(O)J

+
2 2
_ r ¥ .3
PDE: V2(0) C

> ans := dsolve(PDE);
ans =V2(6)=

~ ~ [1+427 1
I (cos(8) - 1) (cos(0)+ 1) Legendrel{i——%c—r— Lo 008(9)]

Jsin(8)
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,, / 2 2
€2 (cos(8) ~ 1) (cos(8) + 1) LegendreQ{“—”;‘*” -2 cos(e>)
+ ——
4/ sin(0)
Appendix-2

Some calculations exercised in Maple 8.0
> with(VectorCalculus):
> Gradient( sinh(x)*sin(y), [x,y] );
cosh(x) sin(y) e + sinh(x)cos(y) e
X  §
> attributes( % );

vectorfield, coords = cartesianx p

> with(VectorCalculus):
> Gradient( (1+(x"2+y22)M(1/2)+(xA2+yA2)7(2/2)+(xN2+y72)7(3/
2)+(xN2+y"2)N 4/ 2))*sin(z), [x,¥,2] );

—E 1 2x43 R x4+ x| sin(z) e +
x?+y° X

(——J—/———+2y+34/x2+y2y+4(x2+y2)y)sin(z)g +
% gy
x“ 4y y
(312) , 52 _
+(x“*+y°) )cos(z) e

7

(W2 +Y +1+x2+y7 + (22 +3%)

> attributes( % );

vectorfield, coords = cartesian_ .

vectorfield, coords = cartesian_ .

> with(VectorCalculus):
> Gradient( (1 H{xA82+y22) M1 [2)H(z224y 222 ) 2) HxA2E5A 22 (8 /
2+ (N2+yN2)N (4] 2))*cos(2), [x,7,2] );
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= +2x+34x2 4y x+4 (x> +y*)x |cos(z)e +
w2y X

S o 3l p e AP0y feosia)E =
y

JxE+yP

(372) 2 ol
(& x* +y2 1%z +y2 + (x2 +y2) + (_x2 +yz) )sin(z) e
Z
Appendix 3
Some visualizations of the functions and related functions.
> plot3d(sinh(x)*sin(v).x=0..2*Pi. v=0..2*Pi, axes=boxed);

> plot3d(cosh(x)*cos(y),x=0..2*Pi,
y=0..2*Pi, axes=boxed);

> plot3d((1+rho+rho”2+rho”3+rho”4)*sin(z),rho=-2..2, z=0..2*Pi,
axes=boxed);
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> plot3d((1l+rho+rho”2+ > plot3d((1+rho+rho”2+rho”3+rho”4)
rho”3+rho”4)*cos(z),rho=-2..2, *cos(z),rho=-2..2, z=0..2*Pi,
z=0..2*Pi, axes=boxed); axes=boxed);

Appendix 4

About Laplaces' Equation

A function which satisfies Laplace's equation is said to be harmonic.
A solution to Laplace's equation has the property that the average value
over a spherical surface is equal to the value at the center of the sphere
(Gauss's harmonic function theorem). Solutions have no local maxima or
minima. Because Laplace's equation is linear, the superposition of any
two solutions is also a solution.

A solution to Laplace's equation is uniquely determined if (1) the
value of the function is specified on all boundaries (Dirichlet boundary
conditions) or (2) the normal derivative of the function is specified on all
boundaries (Neumann boundary conditions).

Coordinate System Variables Solution Functions

Cartesian h (x)V2 ( y)V3 (z) Exponential functions
circular functions,
hyperbolic functions
Cylindrical |8 (p)V2 (d) )V1 (Z) Bessels functions,
exponential functions
circular functions
Spherical " (F)V2 (9)V3 (¢) Legendre polynomial,

power, circular
functions
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