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POTENTIAL FIELDS: A PROPOSED

IMPROVED VISUALIZATION

S. W. ANWANE & R. S. ANWANE

Department of Physics, Shri Shivaji Education Society Amravati's Science

College, Congress Nagar' NagPur

, Departme* "r"S*1"*:,1#,"*#l"j?Hi,1ilil;l 
- Pat' co*ege or

Abstract The capabllity ofpersonal computers aow-a-days is having a great line of

difference wiih compared to the ;;;;;"; ioL"tt" in earlv slxties' This

has a great impact on its.comp"tf"g "infty' 
The' present work throws

$ght on ti" ""i*" 
possibilitrei;;;tp;;;" iuem in a collective wav for

education and reseaich for vlsuallzation'

Keywords . ComPutation' Electric

Introduction
The solution of numerical

oroblems in theoretical PhYsics
i""" ,rrtil a few Years ago the

Jom"in of large comPuters' In

recent Years, Personal comPuters

tr."" t"""tted the power at parwith
tu.g" 

"o*Puters 
of earlY sixties'

Ao-art iro* their high
comPutational Performances'
personal comPuters offer
irrtei."ti"e capabilities and rapid

siaphical outPut of results' which

i-"i" "ot 
.rr.il"bl" even in the

comPuters twentY Years ago' Thus'

o"r*rr"t comPuters offer us a wide
'n"fa of po""ibiliti"s in education

urrJt"""".ch' The Present work-is

urr.tt"-Pt to visualize some of the

*o ai*i"sional Potential fields

,"i.rg Personal comPuter thus

op"t Lg a way to visualization
piotfeti* through a theoretical
approach.

ComPutation of 2D Electric

Field-An aPProach to Practical
problem

Electrostatics and Magnetostattcs

are usuallY Presented in a way

tvtaxwett's Lquations are derived'

wilt ,t " aid of examPle one is

iniroaucea to their form of solution'

itr" .*"*Ples include from Plate

"ora"tt""i 
to field created bY

"rrtt""t 
carrying conductor' The

tro*og"tror" fields can be

i*.giri"a, however Picturing the

.,..rJtration factor of the control
Iia or"r""tronic valve or CRT' field

E"""l"g acceleration and focusing

in CRT takes strain' The Present
wort ttrrows light on the Portion

-tt"r. the imagination succumbs to

mere mattrematical understanding'

In this section we shall deal with

the electric field in vacuum
o"r,^i"i"g to the regions and

torr.,a^.i"s where LaPIace's
equatton

y 2v=o (1)

is obeYed followed bY some tYPical

examples for hands on expenence

."J tit"it interesting results in the
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picture form along with the well-known equations.
(I) Formulation of the problem 2D cartesian coordinates

The boundary conditions we specify for the region in which the
equation is to be solved.

V=0,forx=0,y=o,y=0
and

V = 100 volts for x = a

The practical situation may be raised from the three conducting
platesintheplane V =0, forx = 0,y = a,/ = 0 maintainedatpotential

V =0 andanisolatedplateintheplane x=a bearing V =100 volts.
Now one seeks potential function v(*,y) in the region bounded by the
plates0(x,y<a.

Fig.1 Geometrical Sketch of the accelerating anodes
The solution of Laplace's equation (1) is uniquely determined in the closed
volume, when the potential is specified over surface of the volume. The
volume in which we wish to compute the potential is stiil open.
(if Discretisation of Laplace's equation

For numerical solution of Laplace's equation VrVG,y) : 0 we shall

approxima te V(x,),) on the two dimensional grid of points with constant

mesh width h. Instead of function VQ,y) consider a matrix V,,o) ot
function values.

y=a,V=O volts

Y=0,V=0
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= ih,

-- VG" Y o)

Since the shape of electrodes chosen is simple, it makes easy to fit

inthegrid.only*"h,,"tochoosehsothatthedimensionofsquareais
integrai multiPle of h.

InordertosolvetheLaplace'sequation(1)onthisgrid,wehaveto
a2 a2

first discretise the differential operators O*'' Ay'

Discretisation

lt=khxi

v,o
(2)

avl _ avl

a'v :.&1,., fu\,-o -v, -vo --vo +v,

Axz

SimilarlY,
ay' 

=

Combining last two relations with (1), we get'

oztr a2v , a'v : -v, +v, +v, +voy'V = ---*------ ,)a* --ay'- - h2

Thus % +V2 +V, +Vo)

avl avl

-la2v - fu\..r il\,-o

avl ' v, -vo
1xl,*n h

avl 'vo-v,
a*\.-r=- h

In generalized notationt V,,,

(ii) Iteration
EmPloYing a grid on the PhYsical

estimating the potential at central point
points as dePicted in the Fig'2'

h2

v2 -Vo -Vo +Vo

h2

(3a)

lV,,j*, *V,*t'j *Vit,i) ,to'iv ,,

problem of dimension h and
uii.rg four specified boundary



100
S. W. ANWANE & R. S. ANWANtr

(xry r*r\

V3

(xi-t,Y *\ lx,,y*l lxi,t,Yrl

lxrY **tl

2 V6 v7

V=100 volts

Fig.2 Calculation of potential by approximation formula

For simplicity consider a square region with conducting boundaries

as shown in the Fig. i. The potential on right hand side conducting boundary

is 100 volts and that of remlining sides ziro.The problem is two dimensional

and the sketch is cross section of the physical configuration' The region

uou.,a"abythesefourplatesisdividedinto16Squares,andSomeestimate
of the pot;tial be made at every corner before applying iterative method'

Bettertheestimate,shorterthesolution,althoughfinalresultis
independent of these initial estimates. Reasonably accurate values could

be obtained from rough curvilinear-square map, or equation (3) could be

applied to the large sqlares. At the center of the figure the potential estimate

is then f,{r, 
* v, + v, + v 4) = } t, oo + 0 + 0 + 0) = 25.0rhe potential mav

now be estimated at the centers of the four double sized squares by taking

the average of the potentials at the four corners or applying (3) along the

diagonal J"t of axis. po. the right hand side double squares' we select the

po[ntial of 5OV for the (the average of 100 and 0)' and then

I (so * 100 + 25 + 0)= 43.g and for the reft hand side double square
4'

I (o * 25 + o+ o) = 6.2 anaso on.
4'
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V:O V = loovolts

V=O

Fig.S Calculation of potentials in 16 sub square corners

Mathematical Treatment-Solution to Differential Equation by
Variable Separation

Let the functional dependence we seek be expressed as a product

of two independent functions as VG,i=VrQYrU) Trtererore, the

Laplace's equation reduces to,

r a'v,(x)_ t a2v20)_^,
i@-E- - -v;(r) 

ry'z -'
v,(x)= Acosh(cx)+ B sinh(cx), t'r(y) = c c o t(ry) + D s in(cv)

v = vt|)v,(r) =lt"osh(cx)+ B sinh(cx)flc 
"rr("y) 

+ o sin(cy)j

V : Vn sinh(cx) sin(cy), Choose Vo=BD,A=C:0 (4)

v=ofor y-Tc,2T...cc
V:0forx=0
The equipotential surface for k volts is
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(,r)=',,''ln h64)
Usually the discussion is given up without understanding the

behavior of the equipotential surface and field nature. with the .ia or
waterloo Maple 8.0 we can see the equipotential surface as depicted in the
Fig.4 against simple commands depicted herewith.

>contourplot (sinh(x)*sin(y),x=-3..3,y=-3..3, filled = true,
coloring = [white,blue])

Fig.4. Equipotentials sketches of equation (5) in Maple 8.0
The knowledge of the potential is a key to other related important

parameters/information such as:

Electricfield strength using E = -YV
Density of flux D = eE

Evaluatethedensityof fluxonboundarysurfaceD = D., = Dw?w

Recognize surface density of charge ps = D,v

Estimate total charge on the boundary surfaces p = IJp.aS
Surface

Thecapacit *r""C =4
vo

(s)

(6)
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Respective substitution will
enable to estimate parameters
listed in (6) for the given
configuration of the boundarY
condition and field.

Thus, the method of iteration
exercised manually or even with aid
of a small FORTRAN or C
programme will lead to number of
data points with regards to
selection of h. The locus of Points
holding same potential will lead to

Fig. 5 Geometrical Sketch of the accelerating anodes

what we call equipotential and is
resembling to what is achieved
through Maple.

(II) Formulation of the problem
2D Cylindrical Coordinates

In this discussion we choose the
boundary condition suitable to
construct an electrostatic lens. As
depicted in Fig. 5 it is a cylindrical
metal tube with radius is
interrupted by a flange .

The flanges form a plate
condenser with two annular plates
Fl and F2 at a separation of
distance 2d to which two pieces of
tube Rl and R2 are attached. Let
the right hand flange be charged to
a potential of 1OOOV and the left

hand to the potential of -10OOV.
One seeks the form of Potential
VG,y,r) in the region between

the plates and tubes. If the potential
is known as a function of Position
coordinates, then other related
important parameters / information
such as E, D, P , Q, C using (6)

can be found.

The solution of Laplace's equation
(1) is uniquely determined in the

closed volume, when the potential
is specified over surface of the
volume. The volume in which we
wish to compute the potential is still
open. Clearly to the far right and
far left of the flanges we

shall find 4 = +1000V and

Vz = -V, = -1000V, resPectivelY,

in the tubes. The potential lield will
change between flanges and in the
far left and far right it will remain
constant. Moreover, the potential
field will have axial (or saY
Azimuthal) symmetry which will
reduce the coordinates from 3 to 2
if we employ the Cylindrical
Coordinate system for this
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mathematical treatment. kt the axis of the tubes is z-axis. The coordinates

xandyarereplacedbyPand'{pwherepdenotesdistancefromthez-
axis and {p azimutha'l angle around z-axis' Thus the Laplace's equation

in cylindrical coordinates takes form as:

v:v =LL(r%"1. +* *aiI = s (v p , o) vlr r 
p Op[" ap ) p' arP' oz'

Employingtheazimuthalsymmetrycondition,thepotentialfieldwillbe
independent rP of , we get

. ( a' ^'\
v-v =t .- + 1* * -^! lr(o q)= o (8)

[op- p op oz )

Moreovertheconfigurationissymmetricabouttheplanp.Itis
therefore sufficient to solve (B) fcrr the shaded region in Fig'6.

Fig.6 Shaded portion is symmetric about z = 0 and I '

(i) Discretisation of Laplace's equation

For numerical solution of Laplace's equation we shall approxima te V(p, z)

on the two dimensional grid of points with constant mesh width h. Instead

of function f(p,r) consider a matrix V,o) f function values'

z - ilt

V* =I'Q,,Po)

Since the shape of electrodes chosen is simple, it makes easy to fit
in the grid. Only we have to choose h so. that the tube of radius r and the
semi-distance of flange d are integral multiple of h.

Pt =kh
(e)
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In order to solve the Laplace's equation (9) on this grid, we have to

^ ^) ^)
first discretise the differential operators + *'+op op- oz-

Note: A simple approximation formula for numerical calculation of the
first derivative of a function can be obtained from the definition of derivative:

rG)=rsfu+rb
The transition to the limit h +0 can not be achieved on computer.

Instead, we can use a small, but finite, value for h. Thus we obtain a
formula.

f,G)- tG + n)- r(x) * o(h)
h"

Unfortunately, this derivative gives us no estimate for the error
term O(tt) . We can however, obtain an analytic expression for the error in
simple manner. For this we expand the function in a Taylor series; in
what follows we shall always assume that the function/(x/ is differentiable
a sufficient number of times. We obtain

f(**n): fG)*hf'(*)**t" (,)* |f" '(,)*

Substituting above equation in the last one we get

o(h)=-!t" (,)* (r" '(,)*...

On computer one must not choose h too small, since below certain limit
the rounding error becomes large than the result. One therefore seeks an
approximation formula for which the errors go to zero with a high power of
h. In the present this can be easily achieved. We subtract Taylor series for

tt- * h) tn Taylor series tor f lx - h) , and divide the differen ce bv 2hto

obtain approximation formula:

105

f'(.)- f$ + n)- flx - n)

2h

with the error term

o(n')= -+ f"'(*)* .\/6

* o(h') (a)
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And similarly,

.f''G) =

with the error term

o(h'):-+.f"'6)* .\/6
(a) and (b) are known as two point formula for first and second

derivative.

We have,

For o' b) = -L 7l')(*)* ... , o" b')
Using above approximations

/ n2 r ^ ^2\
v2v =l ** !!**lrr(p,,p\

(op- p op 0r' )

y2v = #V A + h, z) + v (p - h, z) + v (p,, + h) + v (p,, - h) - +v (p, r)l

-;+Vb * h, z)+v(p - h,,)l+ ob'): o

t(x + n)+ f lx - n)- ztlr)
h2

* o(h=)

h2
7t,)(x)+

12

Applying relation (9) and neglecting error term , Olh') ,

the equation by h2 and so obtain an approximation of Laplace's
on grid for k>0

V,.ou *V,,0, *V,*r,o *V,-r.o - 4V,.0)+

multiply
equation

0 (10)
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for k = O i.e. for the grid points on the axis of symmetry (10) is not valid. For
these points we have to formulate a special equation. The equation is most
simply obtained by first converting back to Cartesian coordinates x, y, z
and using approximation formula.

y2v (x,g,z1=

I lv(- + h,y,r)+v(* - h,y,z)+rt(x,y + h,r)+r(*,y - h,r)] 
_

,"1*vQ,y,z + h)+v(x,y,z - n)- er(x,y,z)+ o(r') ] 
- o (rr)

We wish to apply equation to the axis of symmetry and according to set

x = ! = 0Now we return from potential functio, V(*,y,r) in Cartesian

coordinate system to the function f(p,0) in Cylindrical coordinates. The

first four function values on right hand side are all equal, namely equal

toV(h,r). lf *. neglect Olh')and use relation (9)we obtain so called axis

formula.

4V,,, +V,*r,o *V,r,o -6V,,, = 0 (12)

The above equation (12) is analogous to (3) and may be exercised
for iteration and graphical visualization manually (or through a small
programme in FORTRAN or C).

ii) Method of Successive Over-Relaxation:
If one writes down (10) for all interior points of the grid and (i2) for

all the points on axis of symmetry, then one obtains a system of linear

equations from which in principle the matrix @u).""be calculated. Since

we are to calculate many function values , however, this system of equations
has a high dimension. The usual method for solving system of linear
equations, such as the Gaussian elimination method, is no longer suitable
for the solution of the problem.

The system of equations (10) and (12) however, has one peculiarity:
each point is linked only with the directly neighboring points. If we represent
Laplace's operator as an enormous matrix this matrix is almost empty:
most of the elements are zero. For such a problem method of successive
over-relaxation has been developed.

The system of linear equations is solved by iteration:
(i) One postulates an approximate solution.

(iil From this one calculates by means of a formula a better approximate
solution.
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(iii) one test whether improved approximate solution fulfill a quality
criterion.
For 1: For the known potential values in the interior region of the grid
and on the axis of symmetry, one postulates the value which one feels to
be reasonable. The method of successive over-relaxation converges even if
one postulates a constant value for V by judicious choice one merely
economies in iteration stePs.

Flor 2z For each point (i, f)o". after the other, in the interior and on the

axis of symmetry, one applies (10) and (12) to calculate of a potential u al

the point (i, tr)f.ort potential values at the neighboring points'

Ii,'r.,
'= l*'n.'-

* V,,o-, * V,*r,o t V,-r,o)* 
**V,r.,

*V,-r.o+4V,,0*r) O=O

k>0

The improved approximate solution at the point is calculated by
means of formula:

v,T' = v,?l,u * olu - r',ii' ) l < a < 2

The constant is chosen so that one obtains the fastest possible

convergence. we shall now consider this in more detail. The v,,oare

represented by merely one array of numbers in the memory. Whenever a

new value of. V,.o is calculated, the old value is over written by the new'

The ord.er in which (1a) is applied to the point of grid is arbitrary.

For 3: When elements of the matrix of the potential rutr." ((,0 ) are no

longer changing i.e.

v,if" = v,ilo' ( 1s)

then the matrix of the potential values (.0 satisfies the discretised Laplace's

equation with the specified boundary condition. The quality or convergence

criterion is that at no point (;,k) ao"" V,i[* bymore than specified small

value ( In our example we shall specify 6 = 10' Vr = lOa V

The peculiarity of the method is the parameter a) in (1a). If one

sets 6 - | , then one simply replaces ot = lby U. From (13) one can see

(14)
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that u is calculated only from potential values at the neighboring grid
points. At each application of (14), therefore, the information originating
from the boundary values can only propagate by one mesh width. The
propagation of information has a certain similarity to a diffusion process.

With 6 - | the approximate values V,,ornove slowly and monotonically in
the course of iteration towards the respective end values. This process can
be accelerated by setting 6 I lThis is known as over-relaxation, in contrast
to a relaxation with o < 1 If a too large value is chosen for o then the

oscillation and instability set in. It is known that, 6 > I always leads to
instability in the method shown here. A suitable value fora; is obtained by
trial. It is difficult to predict theoretically the most suitable value. However,
it is known that too large value of Ar converges rapidly becomes worse, so
it is better to begin with smaller value of ar we shall replace the semi-
separation distance of the flanges d and radius r by dimensionless integers

drmandn, lll=-:, n=*
hh

iii) Mathematical Treatment-solution to Differential Equation by
Variable Separation

Let the functional dependence we seek be expressed as a product
of two independent functions 

^t V(p, ,): Vr(p\rQb"erefore, the [,aplace,s
equation reduces to,

;6W . 
i*)n(o) = - ;r4e' 

Y& =,' (16)

Vr(p) = A,J,(cp) + B,Y,(cp), Vrb) = C cos(cz) + D stn(cz)

Y = Vt@rr(r)= [o, * orp * drp' +orp3 + oopo IC "or(rr) 
+ D sin(cz))

rr(p,r)= Dsrn(cz\a., *0rp *orp' *orp'+crop'J
Choose C = 0

The equipotentail surface for k volts will be:

D sin(czlgo * orp * orp'* orp' + c,opa l= 11

Note: Here the Bessel function contains a series of constants which are
interdependent and expressed collectively as associated with even and odd
powers in following manner.

(t7l

(18)
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c2
az = 7do'

c2a4= 
'.az=+-

c2du=Ado=

c'
; C[r
3-

c' c'c'
7ot = 1,rz 

a'

c' c'c'c2
Tot = ,zU u,

c'c'
4zy 

ao'

c'c'c'

03=

05=

d7=00,
6'4'22

(The above set of equations for a 's may be obtained if 1o,o'

# =1no'o'-' 
^'u ff =1'b -tb,p'-' in equation (16)).

With the aid of Waterloo Maple 8.0 we can see the equipotential
surface as depicted in the Fig.7 against simple commands depicted. Here
we have preferred all constants as unit for depicting nature equipotential
surf'aces.

The knowledge of the potential opens a key to find other related
important parameters as mentioned in (6).

contourplot(( 1 + (x^ 2 +y^ 2) ^ ( I / 2l+ {x^2+yn2 ) + (x^ ) +y ^21 ^ (3 I
2l+(xa2+yn2)^2)*sin(x),x=-3.. 3,y=-3.. 3,filled=true,
coloring=[white,blue]) ;

c o n t o u rpl o t 3 d ( ( 1 + (x n 2 + y " 2l " (L / 2) + (x^ 2 + y ^ 2l + (x^ 2 + y ^ 2l ^ 13 I
2l+ (xrt2+ya2)^2)*sin(x),x=-3..3,y=-3.. 3,filled=true,
coloring=[red,blue]) ;

Ftg 7. Equipotentials sketches of equation (18) in Maple 8.O

v,(p) =
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Families of Equipotential Surfaces
In this course of discussion of the above specific problem it would

be very meaningful to look in to a very general approach to be exercised in
the beginning while dealing non-routine problems-a test whether the family
of equip otentials exits?.

111

parameter system of surfaces

v(*'Y'') = '
between functions V and f. Differentiating (19) and (20) partially with respect
to x we obtain the result

Ax 0f 0x

and the relation

a2v _ a'r ( af\' , aF a'? f
a* -Tla-) - af af

From which it follows that

Y2v = r" (f\vf)2 + F'(tF'r

If the potential functio nV(*, y, ,)ira solution of Laplace's, the one-

(20l'

Now in free space, Y2V = 0 so that the required condition is that

Y'.f
w= (24)

Hence the condition that the surfaces (19) forms a family of equipotential

v'-f
surfaces in free space is that the quantity 

W 
is function of ,f alone.

If we denote this function t1' X(7)tfr"n the equation (24) may be,,vritten as

#.xU)+--o
From which it follows that

av _aF af
(211

(221

(23l'

r,,(f)
,-w
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v : A[,,0] lx(tDrhr . n

LL2

(25)

from the boundarywhere A and B is a constant may be evaluated
condition.

Conclusion
With the little information that the potential is function of two

variables we have started with the problem. Then we have fixed some
boundary conditions in simple possible way and inferred many details of
the field along with its visualization. The present generation of personal
computers thus can be explored in visualization of fields and can emerge
with highly interactive methods in education and research.

Appendix-1
Treatment to some differential equations in Maple 8.0
> PDE := 1 /Vl(x)*diff(Vl (x),x,xl=-c^2;

t2i^ vttr)
PDE:: 

dx" 
- -"2Vl(x) w

> ans := dsolve(PDE);

ans :: Vl(x) = _C'l sin(c.x) + -_C2 cos(c r)
> PDE := 1 /V2(y)*diff(V2(y),y,y)=c"2;

t2

i-vzfrl
PDE': 

tlY" 
- "zY2(v) - v

> ans := dsolve(PDE);

ans i: V2(y) = 
-C 

l.(-c-v) + *()2 e\')')

> PDE:= 1/Vi(rho).(difffv1(rho),rho,rho)+1/rho*difffV1{rho),rho))=c^2;

tl _..

,17 \ ,/oVl(P)

-\' l(P),,1*-o -
2

=Cvl(p)
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> ans :: dsolve(PDE);

> PDE:=
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ans '.: Vl(p) *- _Cl Bessell(0, p c) +_C2 BesselK(0, p c)

1 /V2 (phi).diff[V2 (phi),phi,phi) =-sn2'

Lu'1q'd6" )PDE:=-V{q.1 =-t-

> ans :: dsolve(PDE);

ans :: V2(0) = *Cl sin(c $) + *C2 cos(c Q)

> PDE : = 1 /V 1 (r)* (diff(V 1 (r),r,r) +2 / r*diff(V 1 (r),r) ) =c^2 ;

PDE::

> ans:- dsolve(PDE);

PDE::
v2(e )

> ans:= dsolve(PDE);

ctns:: V2(e) =

-C1 
(cos(0) - 1 )""' 1.0r10) + I )"'t' L.g.n,l

r-*.j1+4c-r"

ans .-r r., , .. \ -Cl sinh( c r) . -C2 
cosh( c r )::v[(r, - ,

> PDE := | I V2{t]neta)*( 1 / r^2*diff(v2 (theta),theta,theta)+cot(theta) /
r^ 2*diff(V2 (theta), thet all= - c^2 ;

4ur,r,
d0'

,+r-

1

7. 
cos(0 )

i
V

+

T

fi1"C,
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C'2 (cos(0) - 11(11+r (cos(0) + I

tt4

,'ti(e,
Appendix-2

Some calculations exercised in Maple 8.0
> with(VectorCalculus) :

> Gradient( sinh(x)*sin(y), [x,y] );

cosh(x) sin(y) e + sinhlr; cos(y) e

> attributes( %o );

v e ct orii el d, c o ords = c art e s ian 
x. t,

> withfVectorCalculus) :

> Gradient( (1+(x^2+y^2)"(l l2l+(x^2+y^21^(2 I 2)+$n2+y"2l"G I
2l + (x^2+y ^21 ^ $ I 2ll. sin(zl, lx,y,zl ) ;

) Legend

x+4(xz(-:+2x+3
l^lt' * v'

+y2

+y2

\_xlsin(z)e +

)x

ylsin(z)e +

)v
^2+y') ) cos(z) e

{-#+2y+3^F+nt y+4(x2
\^l*' * v'

f 

- 

- 1 r 1 ".(3/2j 1

Glr'+y' + 1+x2 +y2 +(r'+y')' +(x'

> attributes( 7o );

, 

urrtorJield, coords = c(trtesianx. 
),. 

_

vectorfield, coords = carlesiml,. 
t,

> rn ith[VectorCalcuius) :

> Gradient( ( 1+ (x^2+y^2)^( 1 /2)+(x^2+y"2)"(2 I 2l+(x^2+v^2)"(3/
2)+ (x^2+y n2l^ $ I 2))* cos(z), [x,y,z] ) ;

+y2
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/ v fn \ 
-

| -+ + 2 x +3 
^l 
*' + yz x + 4 lxz + 1,21 x I cos(z) e +

\4*"+y" ) x

115

\-y+4(x'+y')ylcos(z)e -)v
+ I + xz + y2 + G' * y')"'' *, x2 + 1,2)') rin(r) 

"z

Appendix 3
Some visualizations of the functions and related functions.

> olot3d(sinh(x)*sin(v).x=0. . 2*Pi. v=0.. 2*Pi, axes=boxed) ;

> plot3d(cosh(x) *cos(y),x=0. 
. 2*Pi,

y=0..2*Pi, axes=boxed) ;

> plot3d(( L +rho+rho^2+rho^3 +rho^4)* sin(z),rho= -2..2, z=O..2*Pi,
axes=boxed);

200

100

0

-100

0

+y2
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-2
> plot3d(( 1+rho+rho^2+

rho^3+rho^4)*cos(z),rho: -2. .2,

z=O. .2* Pi, axe s=boxed) ;

Appendix 4
About Laplaces' Equation

A function which satisfies Laplace's equation is said to be harmonic.
A solution to Laplace's equation has the property that the average value
over a spherical surface is equal to the value at the center of the sphere
(Gauss's harmonic function theorem). Solutions have no local maxima or
minima. Because Laplace's equation is linear, the superposition of any
two solutions is also a solution.

A solution to Laplace's equation is uniquely determined if (1) the
value of the function is specified on all boundaries (Dirichlet boundary
conditions) or (2) the normal derivative of the function is specilied on all
boundaries (Neumann boundary conditions).

> p1ot3d(( 1 trho+rho^2+rho^3+rho^4)
*cos(z),rho= -2..2, z=A..2*Pi,

axes=boxed);

Coordinate System Variables Solution Functions

Cartesian

Cylindrical

Spherical

rt,(x)v,(y)v,(r)

v,(p)v,(O)r,, G)

v,Q)v,(e)r,(O)

Exponential functions

circular functions,
hyperbolic functions

Bessels functions,

exponential functions
circular functions

Legendre polynomial,

power, circular
functions
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