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Plane symmetric thick domain walls and cosmic strings are considered in
Canuto et al (1977) formulated scale-covariant theory of gravitation. It is shown that,
in this theory, thick domain walls and cosmic strings do not exist.
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1. INTRODUCTION

In recent years there has been lot of interest in several alternative theories
of gravitation. The most important among then are scalar-tensor theories of
gravitation formulated by Brans-Dicke (1961), Nordt-Vedt (1970), Ross (1972),
Rosen (1973), Dunn (1974) and Saez-Ballester (1985). All versions of the scalar-
tensor theories are based on the introduction of a scalar field ¢ into the
formulation of general relativity. This scalar field together with the metric tensor
field then forms a scalar-tensor field representing the gravitational field.

Canuto et al. (1977) formulated a scale-covariant theory of gravitation
which also admits a variable G and which is a viable alternative to general
relativity. In the scale-covariant theory, Einstein’s field equations are valid in
gravitational units where as physical quantities are measured in atomic units. The
metric tensors in the two systems of units are related by a conformal
transformation.

g; =0 (2% ) gy, (1)

wherein Latin indices takes values 1, 2, 3 and 4, bars denote gravitational units
and unbar denotes atomic quantities. The gauge function ¢ (0 < ¢ <o) in its
most general formulation is a function of all space time coordinates. Thus, using
the conformal transformation of the type given by (1), Canuto et al. (1977)
transformed the usual Einstein equation into:

Ry~ R+ £ (6) = ~8T1G () Ty + A(6) g @
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where

O fy; =20 0 j— 40, &;— g5 (005 — 0 oy ). 3)

where R; is the Ricci tensor, R the Ricci scalar, A the cosmological constant, G
the gravitational ‘constant’ and 7j; is the energy momentum tensor. A semicolon
denotes covariant derivative and ¢, denotes ordinary derivative with respect to x'.

A particular feature of this theory is that no independent equation for ¢ exists.
The possibilities that have been considered for gauge functions ¢ are

¢(z)=(t70)€, e=il,i%, @)

1
where £, is constant. The form ¢ ~ 72 is the one most favored to fit observations.
The energy conservation equation for perfect fluid is given by

, G
p+(p+ p)ud =-p G¢¢)4 -3p8t. 5)

A detailed discussion of scale covariant theory is contained in the work of
Canuto et al. (1977b), Beeshan (1986, a, b, c), Reddy and Venkateswarlu (1987),
Reddy er al. (2002). Reddy and Venkateswarlu (2004) have investigated several
aspects of this theory of gravitation with the perfect fluid matter distribution as
source.

The study of cosmic strings and domain walls has received considerable
attention in cosmology since it plays an important role in structure formation and
evolution of the universe. Cosmic strings and domain walls are topological
defects associated with spontaneous symmetry breaking whose plausible
production site is cosmological phase transitions in the early universe. The
gravitational effects of cosmic strings have been extensively discussed by
Vilenkin (1981), Gott (1985), Leteliar (1983), Satchel (1980) and Adhav et al.
(2007a, b) in general relativity. Also, Tikekar et al. (1994) have presented a class
of cylindrically symmetric molds in string cosmology.

In particular, the domain walls have become important in recent years from
cosmological stand-point when a new scenario of galaxy formation has been
proposed by Hillet ef al. (1989). Vilenkin (1983), Ispeu and Sikivie (1984),
Widrow (1989), Goets (1990), Mukherjee (1993), Wang (1994), Rahaman et al.
(2001), Reddy and Subbarao (2006) and Adhav (2007c) are some of the authors
who have investigated several aspects of domain walls.

The purpose of the present work is to study plane symmetric cosmological
models in a scale covariant theory of gravitation with cosmic strings and domain
walls. Our paper is organized as follows. In Section 2, we have discussed plane
symmetric string cosmological models in the scale-covariant theory of
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gravitation. Section 3 contains discussion on the thick domain walls in plane
symmetric space time. The last section contains some conclusions.

2. COSMIC STRINGS

We consider the energy momentum tensor for cosmic string source as:
i — i i
Tj—puuj—kxxj, (6)

where p is the rest energy density of the cloud of strings with massive particles
attached to them, p = p,, + A, p,, being the rest energy of the particles attached to
the strings and A the tension density of the system of strings. u! describes the

cloud four velocity and x’ represents the direction of strings.
We consider the plane symmetric metric

ds? = di* — A[ dx? +dy? |- B2dz?, (7)

where A & B are functions of ‘#” only. Orthonormalism of «’ and x’ is given as

W x'x;=0, xix;=-1. (8)

In the co-moving coordinate system, we have from (6)
I'=T7=0, T{=L, Tj)=p and T;=0 fori=j. 9)

The quantities p and A depend on ¢ only. Here the string source is along
z-axis which is the axis of symmetry.

Now, with help of equations (6), (8) and (9), the field equations (2), (3) and
(5) for the metric (7), with zero cosmological constant can be written as

A (M) e B b (84) g (i
2%+(%)2 +2AX—?+BI‘;—$‘—%+ 3[%4]2 =8nGp (12)
p4+(p+h)[2%+%j=—p%—(p+3k)%‘, (13)

where the suffix 4 after an unknown function denotes differentiation with respect
to ‘.
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The field equations (10)—(12) are three equations in six unknowns A, B, ¢, p, A,
G(¢). Hence, to get a determinate solution we have to assume a relation between
metric potentials A and B as

A =0, wherea = constant (14)

Using equation (14), the set of equations (10)—(13) reduces to

2 2
g o

2 2
%+(%) +A21>)4 +%—(%“) =8nGA (16)

ALY A bs (04
2(74j +32_(;_$+3[$4) ~ 87Gp (a7)
p4+3(p+7»)%=—p%—(p%%)%4 (13)

From equations (15) and (16),
we get A=0. (19)

In the literature [Leteliar (1983)], we have the equations of state for string
models as

p=2XA (geometric or Nambu string) (20)
p=(1+ oA (p- string or Takabayaski string) (21)
p + A =0 (Reddy string) (22)

From equations (19), (20), (21) and (22), we get, p = 0, which shows that in
scale covariant theory neither geometric strings nor p — strings nor Reddy strings
survive. Hence, we observe that the geometric strings, p — strings and Reddy
strings do not exists in the scale-covariant theory of gravitation.

3. THICK DOMAIN WALLS

A thick domain wall can be viewed as a soliton like solution of the scalar
field equations coupled with gravity. There are two ways of studying thick
domain walls. One way is to solve gravitational field equations with an energy
momentum tensor describing a scalar field y with self-interactions contained in a
potential v(y) given by
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1
Wi - g Juwt —v(w) | @3)
Second approach is to assume the energy momentum tensor in the form

where p is the energy density of the walls, p is the pressure in the direction
normal to the plane of the wall and w; is a unit space-like vector in the same
direction.

Here we use the second approach to study the thick domain walls in scale-
covariant theory of gravitation.

In co-moving coordinate system we have from equation (24)

' =T} =T} =p, Tj=-p and T =0 for i=j. (25)

Here pressure is taken in the direction of z-axis. The quantities p and p
depends on ¢ only.

Now, the field equations (2), (3) and (5) [with zero cosmological constant]
for metric (7), with the help of equations (24) and (25) can be written as

%+%+%+BI‘;—?+%—(%)2=%Gp (26)

A (M) e B b (U] g, o
2 Aj? + (%T +2 Azj))“ + Bgi“ —% + 3(%)2 =8nGp (28)
P4 +(p+p)(2%+%)=—p%—(p+3p)%4 (29)

The field equations (26)—(29) are four equations in unknowns A, B, ¢, p, A

and G(o).
Hence to obtain a determinate solution, we assume a relation (14) between
metric potentials and we also assume the equation of state

p=p (30)
Using equations (14) and (30), the set of field equations (26)—(29) reduces to

2 2
2%{%) N Aﬁ‘* +%_[%4j _8$7Gp (1)
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2 2
e o

2 2
O P
P4 +3(p+p)%:—p%—(p+3p)%. (34)

With the help of equations (31) and (32)

we get p=0. (35)
By using equation of state p = p,

we get, p=0=p (36)

which shows that, stiff or self gravitating domain walls do not survive in scale
covariant theory of gravitation.

CONCLUSION

We have shown that plane symmetric cosmic strings models which
represent Nambu strings (geometric strings), p-strings and Reddy strings do not
survive in the scale covariant theory of gravitation formulated by Canuto et al.
(1977) when we assume a relation between metric coefficients. We have also
shown that, in this particular case, the self-gravitating or stiff domain walls do
not exists.

REFERENCES
1. C. H. Brans, R. H. Dicke, Phys. Rev., 124, 925 (1961).
2. K. Jr. Nordvedt, Astrophys. J., 161, 1069 (1970).
3. D. Saez, V.. Ballester, Phys. Lett., A 1113, 467 (1985).
4. D. K. Ross, Phys. Rev., D 5, 284 (1972).
5. N. Rosen, Gen. Rel. Grav., 4, 435 (1973).
6. K. A. Dunn, J. Maths. Phys., 15, 389 (1974).
7. V.M. Canuto, S. H. Hsieh, P. J. Adams, Phys. Rev. Lett., 39, 429 (1977 a).
8. V.M. Canuto, S. H. Hsieh, E. Tsiang, Phys. Rev., D 16, 1643 (1977 b).
9. A. Beesham, Class. Quantum Gravity, 3, 481 (1986 a).
10. A. Beesham, Astrophys. Space Sci., 119, 415 (1986 b).
11. A. Beesham, Class. Quantum Gravity, 3, 1027 (1986 c).
12. D.R. K. Reddy, Venk.
13. D.R. K. Reddy, Ch. S. V. V. R. Murth, R. Venkateswarly, J. Ind. Math. Soc., 68, 179 (2002).
14. D.R. K. Reddy, R. Venkateswarlu, Astrophys. Spa. Sci., 289, 1 (2004).



7 Plane symmetric domain walls 915

15. A. Vilenkin, Phys. Rev. D 23, 852 (1981).

16. J. R. Gott, Astrophys J., 288, 422 (1985).

17. P. S. Letelier, Phys. Rev., D.28, 2414 (1983).

18. J. Satchel, Phys. Rev., D.21, 2171 (1980).

19. R. Tikekar, L. K. Patel, Gen. Rel. Gravit., 26, 647 (1990).

20. R. Tikekar, L. K. Patel, N. Dadhich, Gen. Rel. Grav. (1994).

21. J. Isper, P. Sikivie, Phys. Rev., D.30, 712 (1984).

22. L. M. Widrow, Phys. Rev., D.39, 3571 (1989).

23. G. Goetz, J. Math. Phys., 31, 2683 (1990).

24. M. Mukherji, Class. Quan. Grav., 10, 131 (1993).

25. A. Wang, Mod. Phys. Lett. 39, 3605 (1994).

26. F. Rahaman, S. Chakraborty, M. Kalam, Int. J. Mod. Phys., D 10, 735 (2001).

27. D.R. K. Reddy, M. V. S. Rao, Astrophys. Space Sci., 302, 157 (2006).

28. C.T. Hillet, D. N. Schram, J. N. Fra, Nucl. Part. Phys., 19, 25 (1989).

29. K. S. Adhav, A. S. Nimkar, M. V. Dawande, Astrophys. Space Sci. DOI 10.1007/s 10509-
007-9506-8 (2007).

30. K. S. Adhav, A. S. Nimkar, R. P. Holey, Int. J. Theory Phys. DOI 10.1007/s /10773 — 007-

9357-7 (2007).



