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Abstract Exact solution for a homogeneous cosmological
model in 5D space-time-mass gravity theory proposed by
Wesson (Astron, Astrophys. 119:145, 1983) is obtained by
assuming the time-dependent equation of state. The behav-
ior of the solution is discussed for the two cases k < 0
and k = 0. It is found that the observed constancy of the
rest mass of an isolated particle in the present era may
be interpreted as a consequence of the decreasing rate of
change of rest mass with time. Moreover, a spontaneous
compactification-like phenomenon of an extra dimension
takes place in the case of k = 0. It is also found that with de-
crease in extra space the observable three-dimensional space
entropy increases, thus accounting for the large value of en-
tropy observable at present.

Keywords Cosmology - Wesson’s theory - Variable rest
mass - Time dependant equation of state
1 Introduction

Wesson (1983) proposed a 5D space-time-mass gravity the-
ory in which the rest mass of a typical particle may change
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with time. Wesson introduced the fifth coordinate x* =

(g)m (c is velocity of light and m is the rest mass) be-
sides the 4D space-time coordinates and extended Einstein’s
general relativity from the 4D space-time to the 5D space-
time-mass directly. It is useful to find and investigate solu-
tions of the field equations in the 5D space-time-mass grav-
ity theory to understand the meaning of the fifth dimensional
subspace and provide predictions, which can be used to test
the theory itself. Several authors, have, recently obtained ex-
act solutions in Wesson'’s theory with or without matter dis-
tribution (Chatterjee 1986, 1987, Fukui 1987; Gren [988;
Chatterjee et al. 1990; Banerjee et al. 1990b; Berman and
Som 1993). But exact solutions with time-dependent equa-
tion of state are not much known in the literature. Haji and
Boutros (1991) obtained solutions for an LRS Bianchi-I
model with time dependant equation of state while Manna
and Bhui (1994) presented higher dimensional cosmologi-
cal model with a time dependent equation of state. Recently
Bhui et al. (2005) has generalized the work of Haji and
Boutros (1991) using Kaluza-Klein metric.

Following the work of Bhui et al. (2005) we find. in
this paper, exact solutions of the field equations of Wesson
(1983) space-time-mass gravity theory with a time depen-
dent equation of state p = a(t)p. Physical behaviors of the
solutions are also discussed.

2 Field equations

Following Grgn (1988) we take the line element in the form

2

dsz =cl't2 -

(dx? +dy* +dz*) — A%dm®, (1)
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where k characterizes the spatial curvature. Unlike Wesson,
the fifth coordinate is taken to be space-like and the metric
coefficients are assumed to be functions of time only.

We consider Einstein’s equations

1
Rij — 58R=Ty; (i.j=0,1.2,3.4), 2)

where the energy-momentum tensor 7;; for a perfect fluid is
as suggested by Grgn (1988)

T;j=diag(p, —p, = p, —p, —p4). 3)

Here p is the matter density, p is isotropic pressure and pa
is the pressure that would result if the fluid existed in a five
dimensional space.
In the case of comoving fluid the field equations (2) with
energy momentum tensor (3) lead to the equations
R+k RA 1
—_—+ — = —p, 4
RZ " RA 3" )
2R Rrk 24 A 5
R R " RA AP
R - RP+k 1
R R2 = 3 p49
where dot (-) denotes derivative with respect to time and ps
is the pressure that would result if the fluid existed in a five
dimensional space time as it is possible in the Kaluza-Klein
models. However according to Wesson’s theory the fifth di-
mension is essentially a parametrisation of rest mass and we
must have ps = 0. Equation (6) then reduces to

(6)

R R+k
o =0, _ 7
% + 72 (7
which gives
R =K, + Kat — kt*, (8)

where K| and K are arbitrary integrating constants.
Following Grgn (1988) one can calculate from geodesic
considerations the variation of rest mass with time as

1
die Pul o P217°
W=mle-a) ©

where P, (a constant of motion) is the conjugate momentum
and K is an arbitrary constant.

3 Solutions of field equations

31 Case l (k<)

In this case, one can adjust K'; and K5 such that (8) becomes
a perfect square, we get

R=1. (10)
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Assuming the time dependent equation of state
p=olt)p. (1)
From (4) and (5) we get a differential equation of the form

2R | R+ k
R R2

)(? +l)+IéA(3 +2 +A'70 (12)
da RA o ) 3

From (10) and (12) we obtain
PA+1Ga+2)A+ B+ Dik+ DA =0. (13)

Using the condition of exactness for the above linear equa-
tion and after a straightforward calculation we get

k A
a([)—(:‘l.’ ( Ik ), (] )

where ¢ is an arbitrary constant of integration.
Putting this value of a(t) in (13) we get

. k—1 . 1
1?A+ [3‘:1:"*' + (—) t:| A+ {3‘:,:" - d A=0

(15)

whose first integral is given by
; k+1
r2A+[3c1r"‘+l - (%)r}q:cz, (16)

where ¢; is an arbitrary integrating constants.

From (7) and (10) we get k = — 1. Using this in (16) and
solving for A we get
A= 2 4 el a7

3¢

where ¢3 is an arbitrary integrating constant.

This solution (17) is similar to the solution obtained by
Bhui et al. (2005).

Now we consider ¢ = ~—c¢3 then A can be put in the form

A:C3€3c'/1*%. (18)
I

Using (18) in the field equations it also follows that

9¢
P=3r = —31-/r ' (19)
t [me Gt — 1]
and
_ 9
p=alt)p= A g3l (]’ (20)
- B3

For physical validity i.e. for matter density to be nonnega-
tive, one has to choose integration constants ¢, ¢ and ¢3 to
be positive and

€2
3(‘1(_‘3

> 1, (21)
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here ¢ is related to the mass density of the system. When
¢y =0, the mass density vanishes. We may be assured that
the matter density is nonnegative. It follows from equation
(19) that the integration constants ¢| and c¢2 will always be
positive. We discuss the dynamical behaviors of the model.
The four volume V = R3A starts from zero at t = 0 and
vanishes at

3¢

& 1
In{ 551

tg= (22)

It is interesting to note that the extra scale factors start-
ing from an infinite expansion at the big bang reduces to
Planckian length at the same point of time rg. It has been
conjectured (Sahdev 1984) that certain quantum gravity ef-
fects stabilized the extra space at the Planckian length and
the cosmology of the universe evolves according to FRW
model with the space remaining the silent spectator from
this point on.

Using (18) in (9) we get

dm Py,

T 3¢ 3ep
U [ege™ — ZYKcre™ ~ )2~ P2

(23)

bl

Ast — oo, % approaches to a constant value proportional

to P, provided K (¢3 — »3%) > Pp.
3.2 Case2(k=0)

In this case, for Ky =0, K5 # 0 one can calculate from (8),
the scale factor R(r) as

R =+/Kst. (24)

Using (24) in (12), we get linear differential equation of the
form

412 A + 22 + 32]A + [3a — 1]A =0. (25)

From the condition of exactness of the above linear differ-
ential equation one can calculate () as

a(t)=1+di~ 2, (26)

where d) is an arbitrary constant of integration.
Substituting the value of «(r) from (26) in (25), we get

42A 4205 +3d1 7 VA + 2+ 3di 7V HA=0,  2T)
whose first integral is given by
482A + 2t + 6d11' A = dy, (28)

where d> is an arbitrary constant of integration.

313
Equation (28) gives
| d> 3d, f1'1?
A m 64, + dze . (29)

where /3 is an arbitrary constant of integration.
Now we consider da = —d, then (29) can be put in the
form

- |:d3e3“r'/'”l = ih—] . (30)

1
172 6,

As t — 00, A — 0. Hence the solution is amenable to di-
mensional reduction.
Now using (30) in the field equations we get

9d,

s . (31)
4P gttt 1]
and
9d, 1 |
S =~ L

To ensure the matter density to be nonnegative it follows
from (31) that integration constants d,d> and d3 will be
always positive and

dy
6d,d3

> 1

In this case our solution is the generalization of the solution
obtained by Manna and Bhui (1994).

4 Conclusion

We have presented here the five dimensional world as de-
fined according to the Wesson’s theory of gravitation with
an energy momentum tensor containing matter density p,
isotropic pressure p and pressure p4 that would result if the
fluid existed in a five dimensional space. From the solution
of the metric coefficient A, it follows that over time A ap-
proaches zero, giving rise to phenomenon of the dimension
reduction for an expanding models. From the expression for
the mass density and pressure, it is shown that they are in
general positive and vanishes at infinity with an initial sin-
gularity at t = 0.
From the energy conservation relation we get from (3)

'+3(+)R+ 4 0 (33
P p+p g ey =0 )

Since n ~ R~ the effective four-dimensional specific
entropy E will in general increase at a rate (Banerjee et al.
1990a)

E%;[d(p/nupd(l/n)]
KT dt dt

(34)
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where
E=gy
L PUPYORA. 35)
= gET |[PTOPTAE | .

which in view of (9) yields

E= : [-—ﬁ} (36)
nKT A

From (36), we thus arrive at a very important relation which
needs further interpretation in higher-dimensional physics.
It may be conjectured that besides the well-understood
mechanism of entropy increases due to dissipative phenom-
enon like viscosity, here the process of dimensional reduc-
tion also produces entropy in the fourth dimension, which
may be enormous if A decreases quickly.

From (25) one can calculate the variation of rest mass
thoroughly discussed by Grgn (1988). For this reason we

have not given the explicit expression for % in our case. It
also follows from (25) that, in an open universe k = —1, %’;_’

becomes constant for large value of ¢. If one takes the value
of this constant as either zero or extremely small then ob-
served constancy of rest mass of an isolated particle in the
present era may then be interpreted as a consequences of
decreasing rate of change of rest mass with time.

‘a Springer

In case of closed universe k =0, A — 0 ast — oo, which
gives the dimensional reduction phenomenon. In this sce-
nario the length of the fifth dimensional subspace shrinks
while the normal dimension expands. In this case one finds
that the 5D universe of Wesson enters in the usual 4D uni-
verse after a long peried of expansion with the matter con-
tent as radiation. Here the process of dimensional reduction
also produces entropy in the higher dimension, which may
be enormous if A decreases quickly.
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