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Abstract :  
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Introduction : 

Einstein’s general theory of relativity has been successful in describing 

gravitational phenomena and served as a basis for models of the universe. 

However, since Einstein first published his theory of gravitation, there have 

been many criticism of general relativity because of the lack of certain 

‘desirable’ features in the theory. For example, Einstein himself pointed out that 

general relativity does not account satisfactorily for inertial properties of matter. 

i.e. Mach’s principle is not substantiated by general relativity. So in recent years 

there has been lot of interest in several alternative theories of gravitation. The 

most important  among them are scalar-tensor theories of gravitation formulated 

by Brans-Dicke (1961), Nordt-Vedt (1970) and Saez – Ballester (1985). All 

versions of the scalar-tensor theories are based on the introduction of a scalar 

field  into the formulation of general relativity. This scalar field together with 

the metric tensor field then forms a scalar-tensor field representing the 

gravitational field.  

Canuto et al (1977) formulated a scale-covariant theory of gravitation 

which also admits a variable G and which is a viable alternative to general 

relativity. In the scale-covariant theory, Einstein’s field equations are valid in 

gravitational units whereas physical quantities are measured in atomic units. 

The metric tensors in the two systems of units are related by a conformal 

transformation 

ij

k

ij
gxg )(2  (1) 

where in Latin indices takes values 1,2,3,4, bars denote gravitational 

units and unbar denotes atomic quantities. The gauge function  (0<<) in its 
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most general formulation is a function of all space time coordinates. Thus, using 

the conformal transformation of the type given by (1) Canuto et al (1977) 

transformed the usual Einstein equation into  

ijijijijij
gTGfRgR )()(8)(

2

1
   (2) 

where 
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gf    (3) 

where Rij is the Ricci tensor, R the Ricci scalar,   the cosmological 

constant, G the gravitational  ‘constant’ and Tij is the energy momentum tensor. 

A semicolon denotes covariant derivative and  i denotes ordinary derivative 

w.r.to x
i
. A particular feature of this theory is that no independent equation for  

exists. The possibilities that have been considered for gauge functions  are  
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1   (4) 

where to is constant. The form 2

1

t  is the one most favoured to fit 

observations [     ]. 

The energy conservation equation for perfect fluid 








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  (5) 

A detailed discussion of scale covariant theory is contained in the work 

of Canuto et al (1977 b), Beeshan (1986 a,b,c), Reddy & Venkateswarlu (1987), 

Reddy et al (2002) and Reddy and Venkateswarlu (2004) have investigated 

several aspects of this theory of gravitation with the perfect fluid matter 

distribution as source. 

It is still challenging problem to know the exact physical situation at very 

early stages of the formation of our universe. At the very early stages of 

evolution of the universe, it is generally assumed that during the phase 

transition (as  the universe passes through its critical temperatures) the 

symmetry of the universe is broken spontaneously. It can give rise to 

topological stable defects such as strings, domain walls and monopoles (Kibble, 

1976) of all these cosmological structures, cosmic strings and domain walls 

have excited the most interest. The gravitational effects of cosmic strings, both 

in general relativity and in the alternative theories of gravitation, have been 

extensively discussed by Vilenkin (1981), Gott (1985), Letelier (1983), Stachel 

(1980), Krori et.al (1990), Banerjee et al (1990), Tikekar and Patel (1990), 

Tikekar et al (1994), Rahaman et al (2002), Reddy (2003 a,b),  Reddy (2005 

a,b) and Adhav et al (2007 a,b). 
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In particular, the domain walls have become important in recent years 

from cosmological stand point when a new scenerio of galaxy formation has 

been proposed by Hillet et al (1989). According to them the formation of 

galaxies are due to domain walls produced during phase transitions after the 

time of recombination of matter and radiation. So far a considerable amount of 

work has been done on domain walls. Vilenkin (1983), Ipser & Sikivie (1984), 

Widrow (1989), Goets (1990), Mukherjee (1993), Wang (1994), Rahaman et al 

(2001), Rahaman (2002), Reddy & Subbarao (2006) are some of the authors 

who have investigated several aspects of domain walls. 

The purpose of the present work is to study Bianchi type-I and type-V 

cosmological models in a scale covariant theory of gravitation with cosmic 

strings & domain walls. Our paper is orgnized as follows. In section 2, we 

discuss Bianchi type – I and type-V strings cosmological models in the scale-

covariant theory of gravitation., In section 3, we discuss the thick domain walls 

in Bianchi type-I and type-V space time.  The last section contains conclusions. 

2. Cosmic Strings 

In this section, we discuss the non-existence of Bianchi type -I and type-V 

cosmic strings in the scale-covariant theory of gravitation. Here we consider the energy 

momentum tensor for cosmic string source as 

 
j

i

j

ii

j
xxuuT    (6) 

where  is the rest energy density of the cloud of strings with massive particles 

attached to them. =p+  , p being the rest energy of the particles attached to the 

strings &   the tension density of the system of strings. As pointed out by Letelier 

(1983),   may be positive or negative, u
i
 describes the cloud four-velocity and x

i
 

represents the direction of strings. 

2.1 Bianchi type – I space - time 

We consider the Bianchi type-I metric given by (Reddy 2003) 

 
22222222 dzCdyBdxAdtds      , (7) 

where A and B are functions of ‘t’ only. Orthonormalism of u
i
 and x

i 
is given as 

 1,0,1 
i

i

j

i

i

i xxxxuu  (8) 

In the comoving coordinate system, we have from (6) 

 0,,,0 4

4

3

3

2

2

1

1
 i

j
TTTTT  for i  j (9) 

The quantities   and   depend on t only. Here the string source is along z-axis 
which is the axis of symmetry. 

Now, with the help of (6), (8) & (9) the field equations (2), (3) & (5) for the 
metric (7), with zero cosmological ‘constant’ can be written as 
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where the suffix 4 after an unknown function denotes differentiation w.r. to ‘t’.  

The field equations (10) – (13) are four equations in seven unknowns  A, B, C, 

 ,  ,  and G(). 

Hence to get a determinate solution we assume a relation between metric 
potential 

A = C,        =  constant (15) 

Using equation (15), the sets of equations (10) – (14) reduces to 
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From equation (16) & (18),  

we get     = 0 (21) 

In the literature (Letelier 1983), we have the equations of state for strings model 

as 

 =   (geometric or Nambu String) (22) 

 = (1+)   (p - string or Takabayasi String) (23) 

 +=0         (Reddy String) (9,36,37) (24) 

Using equations (21) in (22), (23) & (24), we get  = 0, which shows that in 
scale covariant theory neither geometric string nor p-string nor Reddy string  survive. 

Hence we observe that the geometric strings, p-strings and Reddy strings do not exists 
in the scale covarient theory of gravitation.    

2.2 Bianchi type – V  space - time 

We consider the Bianchi type-V metric given by  

 )( 22222222 dzdyeBdxAdtds x      , (25) 

where A and B are functions of ‘t’ only. Orthonormalism of u
i
  and x

i 
is given as 

 1,0,1 
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In the comoving coordinate system, we have from (6) 
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The quantities   and   depend on t only. Here the string source is along x-axis 
which is the axis of symmetry. 

Now with the help of (6), (26) & (27) the field equations (2), (3) & (5) for the 

metric (25), with zero cosmological ‘constant’ can be written as 
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where the suffix 4 after an unknown function denotes differentiation w.r. to ‘t’.  
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With the help of Equation (31), Equation (28) – (32)  reduces to 
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Solving above equation of From equation (33) & (34),  

we get ,        = 0 (37) 

Using equation (37) in (22), (23) & (24),  

we get         = 0 

Here we again observe that the geometric strings, p-strings and Reddy strings 

do not exist in the scale covarient theory of gravitation.    

3.  Thick Domain Walls :  

 In this section we discuss the thick domain walls in the Bianchi type-I and 

type-V space-time given by (7) & (25). A thick domain wall can be viewed as a 

solution like solution of the scalar field equations coupled with gravity. There are two 
ways of studying thick domain walls. One way is to solve gravitational field equations 

with an energy-momentum tensor describing a scalar field   with self interactions 

contained in a potential v () given by 

 .)(
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1
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  vg k

kijji
 (38) 

Second approach is to assume the energy momentum tensor in the form 

 ,)(
jijiijij

pgT         1
j

i  (39) 

where  is the energy density of the walls, p is the pressure in the direction 

normal to the plane of the wall and  i is a unit space- like vector in the same direction 

(32). 

 Here we use the second approach to study the thick domain walls in scale-

covariant theory of gravitation. 
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3.1 Bianchi type-I space time 

 Consider the axially symmetric metric given by (7). In comoving coordinate 

system we have from (18) 
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Here pressure is taken in the direction of Z-axis. The quantities   and  p 
depends on t only. Now, the field equations (2), (3) & (5) [with zero cosmological 

‘constant’]  for the metric (7), with the help of (39) & (40) can be written as 
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Equations (41) – (45)  are a set of five independent equations in seven 

unknowns A , B ,C ,  p ,  , G  and  . Hence to get a determinate solution assume a 
relation between metric potentials given by (15). We also assume the equation of state 

  = p (46) 
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with the help of equation (47) & (49), 

we get   p  = -   or   +  p  = 0 (52) 

which leads to domain wall models in the acceleratred universe dominated by a 

fluid with negative pressure such that the string energy condition is violated. However, 

since in the standard cosmology a fluid of negative pressure violating the string energy 

condition does not cluster at large scale in the relativistic regime equation (47) & (49) 
together yield 

  = 0 =  p (53)   

which shows that, stiff or self-gravitating domain wall do not survive in scale 

covariant theory of gravitation in this particular case. 

3.2  Bianchi type -V space-time 

 We again, consider Bianchi type-V metric given by (25), in the comoving 

coordinate system we have from  
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 Here pressure is taken in the direction of Z-axis. The quantities  & p depends 
on t only. Now, the field equations (2), (3) & (5) [with zero cosmological ‘constant’]  

for the metric (25), with the help of (39) & (54) can be written as 

















G

B

B

A

A

AB

B

B

B
82

1
2

2

4444444

2

2

444 
















  (55) 













G

A

A

AAB

BA

B

B

A

A
8

1
2

44444

2

444444 







  (56) 

Gp
A

A

AAB

BA

B

B

A

A













8

1
2

44444

2

444444 







  (57) 

G
AB

B

AB

BA
8

3
2

2

2

444 







  (58) 

044 
A

A

B

B
 (59) 
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


 444

4
)3()(3 p

G

G

B

B
p   (60) 

Equations (55) – (58) & (60) are set of five independent equations in seven 

unknowns A , B ,C ,  p ,  , G  and  . Hence to get a determinate solution assume a 
relation between metric potentials (A=B) from equation (59). We also assume the 

equation of state 

  = p (61) 

 The sets of equation (55) – (60), reduces to  













G

B

B

BB

B

B

B
8

1
2

2

44444

2

2

444 
















  (62) 

Gp
B

B

BB

B

B

B













8

1
2

2

44444

2

2

444 
















  (63) 

G
BB

B
8

3
3

2

2

4 







 (64) 




 444

4
46 

G

G

B

B
 (65) 

with the help of equation (62) & (63), 

we get  - = p  i.e.   +  p  = 0  

by using equation of state   = p    

 =  0 = p   (66) 

which shows that, stiff or self-gravitating domain walls do not survive in scale 

covariant theory of gravitation. 

4.  Conclusion : 

 We have shown that Bianchi type -I and type-V cosmic strings models which 

represent Nambu string (geometric string), p-string & Reddy string do not survive in 

scale covariant theory of gravitation formulated by Canuto et al (1977) when we 

assume a relation between metric co-efficients. 

 We have also shown, in this particular case, that self-gravitating or stiff 

domain walls do not exists.  
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