Science College Congress Nagar, Nagpur

First Unit Test. – 2021-22

Sub: Mathematics and Statistics

Time: 3Hrs)

Marks: 80

Instructions: The question paper is divided into FOUR sections-

- 1) Section A: Q. no. 1 contains *eight* multiple choice type questions carrying **two** marks each. Q. no. 2 contains *four* very short answer type of questions carrying *one* mark each.
- Section B: Contains *twelve* short answer type questions carrying two marks each. (Attempt any *eight*)
- 3) Section C: contains *twelve* short answer type questions carrying *three* marks each. (Attempt any *eight*)
- Section D: Contains *eight* long answer type questions carrying four marks each. (Attempt any *five*)
- **5)** Use of logarithmic table is allowed. Use of calculator is not allowed.
- **6)** Figures to the right indicate full marks.
- 7) Use of graph paper is not necessary. Only tough sketch is expected.
- 8) For each MCQ. Correct answer must be written along with its alphabet:

e.g. (a)..../ (b)..../ (c)...../(d)..... Only first attempt will be considered for evaluation.

SECTION – A

Q1) Select and write the most appropriate answer from the given alternatives for each sub-question: [16M]

i) The value of
$$\left(2tan^{-1}\frac{1}{3}\right)$$
 is

a)
$$\frac{15}{27}$$
 b) $\frac{14}{27}$ **c**) $\frac{3}{4}$ **d**) $\frac{13}{27}$

ii) If the angles made by the lines represented by the equation

 $ax^2 + 2hxy + by^2 = 0$ with X-axis are α and β , then $\tan(\alpha + \beta)$ is:

a)
$$\frac{h}{a+b}$$
 b) $\frac{2h}{a-b}$ **c)** $\frac{2h}{a+b}$ **d)** $\frac{h}{a-b}$

iii) if $\bar{a} + \bar{b} = \bar{c}$, $|\bar{a}| = \sqrt{5}$, $|\bar{b}| = \sqrt{2}$, $|\bar{c}| = 3$, then the angle between \bar{b} and \bar{c} is:

a)
$$30^{\circ}$$
 b) 45° **c)** 60° **d)** 90°

iv) if
$$y = \cot^{-1}\left(\frac{1+6x^2}{x}\right)$$
, then $\frac{dy}{dx} =$
a) $\frac{1}{1+9x^2} - \frac{1}{1+4x^2}$ b) $\frac{3}{1+9x^2} - \frac{2}{1+4x^2}$ c) $\frac{6}{1+9x^2}$ d) $\frac{12}{1+9x^2}$

v) The Points A(-1, 3, 2), B(-4, 2, -2), and C(5, 5, λ) are collinear, then the value of λ is:

a) 10 **b)** 9 **c)** 8 **d)** 7

vi)
$$\int \frac{1+\cos^2 x}{1-\cos 2x} dx =$$

a) $-\frac{1}{2} \cot x - \frac{x}{2} + c$ **b**) $\frac{1}{2} \cot x - \frac{x}{2} + c$ **c**) $-\cot x - \frac{x}{2} + c$ **d**) $\cot x - \frac{x}{2} + c$
vii) $\int_0^{\frac{\pi}{2}} \frac{\cos x}{(1+\sin x)^3} dx$ is equal to
a) $\frac{1}{8}$ **b**) $\frac{-1}{8}$ **c**) $\frac{3}{8}$ **d**) $\frac{5}{8}$
vii) the differential equation for $y = e^x(c_1x + c_2)$ is
a) $\frac{d^2y}{d^2} + 2\frac{dy}{d^2} + x = 0$ **b**) $\frac{d^2y}{d^2} - 2\frac{dy}{d^2} - x = 0$

a)
$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + y = 0$$

b) $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} - y = 0$
c) $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} - x = 0$
c) $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + y = 0$

Q2) Answer the following:

i) If $y = \sin^{-1}x + \cos^{-1}x$, find $\frac{dy}{dx}$

ii) Write the contrapositive of the statement $(p \rightarrow q) \rightarrow p$.

iii) Find the value of $cos^{-1}\left(cos\frac{9\pi}{4}\right)$.

iv) Form the differential equation by eliminating the arbitrary constants from $y^2 = ax + b$.

SECTION – B

Q3) Attempt any EIGHT of the following:

i) If θ is the acute angle between the lines given by $3x^2 - 4xy + by^2 = 0$ and

 $\tan \theta = \frac{1}{2}$, find b.

ii) Find the volume of the parallelepiped whose coterminous edges are

 $2\hat{\imath} - 3\hat{\jmath}$, $\hat{\imath} + \hat{\jmath} - \hat{k}$ and $3\hat{\imath} - \hat{k}$.

iii) Find the general solution of the differential equation

$$tany\frac{dy}{dx} = \sin(x+y) - \sin(x-y)$$

iv) Evaluate: $\int \sin^3 x \cos^3 x \, dx$

v) Find the direction ratios of a line perpendicular to both the lines whose direction ratios are 3, 2, -1 and 2, 4, -2.

[4M]

[16M]

vi) Solve the equation: $tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}tan^{-1}x$, for x >0.

vii) Find the value of 'a' if $\int_2^a (x+1)dx = \frac{7}{2}$

viii) Find the inverse of the matrix $A = \begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$ by adjoint method.

ix) Differentiate $e^x \cos x w$. r. t. $e^{-x} \sin x$.

x) The side of a square is increasing at the rate of 0.5 cm/sec. Find the rate of increase of the perimeter when the side of the square is 10 cm long.

xi) The p.m.f. of a random variable X is as follows:

 $P(X = 0) = 5k^2$, P(X = 1) = 1 - 4k, P(X = 2) = 1 - 2k and P(X = x) = 0 for any other value of X. Find k.

xii) A fair coin is tossed 6 times. Find the probability of getting heads 4 times.

SECTION - C

Q4) Attempt any EIGHT of the following questions: [24]

i) If $\tan \theta + \sec \theta = \sqrt{3}$, find the general value of θ .

ii) Show that the simplified form of $(p \land q \land \neg r) \lor (r \land p \land q) \lor (\neg p \lor q)$ is $q \lor \neg p$.

iii) Form the differential equation by eliminating the arbitrary constants:

 $y = A \cos(\log x) + B \sin(\log x)$

iv) if $\hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \hat{j} + \hat{k}$ and $2\hat{i} + 3\hat{j} + m\hat{k}$ are coplanar then find the value of m.

v) Evaluate:
$$\int \frac{\sin(x-a)}{\sin(x-a)} dx$$

vi) Evaluate: $\int_0^1 \frac{dx}{x + \sqrt{1 - x^2}}$

vii) Find the equation of the plane passing through the line of intersection of the planes 2x - y + z = 3 and 4x - 3y + 5z = -9 and parallel to the line

$$\frac{x+1}{2} = \frac{y+3}{4} = \frac{z-3}{5}$$

viii) if $x^p \cdot y^q = (x + y)^{p+q}$, show that $\frac{dy}{dx} = \frac{y}{x}$

ix) At what point does the curve $y = 3x - x^2$ have slope -5?

x) Evaluate: $\int \frac{2}{(1-x)(1+x^2)} dx$.

xi) Find the mean of number of heads in three tosses of a fair coin.

xii) For the binomial distribution $X \sim B(n, p)$, n = 6 and P(X = 4) = P(X = 2). find p.

SECTION - D

Q5) Attempt any FIVE of the following:

i) If
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$$
 then find A^{-1} by adjoint method.

ii) Show that the line 3x + 4y + 5 = 0 and the lines $(3x + 4y)^2 - 3(4x - 3y)^2 = 0$ form an equilateral triangle.

iii) Find the area enclosed by the parabola $y^2 = x$ and the line x + y = 2.

iv) Show that the points with position vectors \bar{p} , \bar{q} , $\frac{5\bar{p}-3\bar{q}}{2}$ and $\frac{2\bar{p}+\bar{q}}{3}$ are collinear.

v) Maximize z = 6x + 4y, subject to $x \le 2$, $x + y \le 3$, $-2x + y \le 1$, $x \ge 0$, $y \ge 0$.

vi) Differentiate $tan^{-1}\left(e^x \frac{x}{\sqrt{1-x^2}}\right)$ w.r.t. $sec^{-1}\left(\frac{1}{2x^2-1}\right)$.

vii) Evaluate: $\int \csc^3 x \, dx$.

viii) Find the dimension of a right circular cone of maximum volume which can be inscribed in a sphere of radius r.

[20M]