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Classroom

In this section of Resonance, we invite readers to pose questions likely to be
raised in a classroom situation. We may suggest strategies for dealing with
them, or invite responses, or both. “Classroom” is equally a forum for raising
broader issues and sharing personal experiences and viewpoints on matters
related to teaching and learning science.
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1.  Introduction

While teaching the behaviour of a uniformly moving beam of
electrons in electric and/or magnetic field, a mere theoretical
discussion does not impart a complete understanding. The
present work aims at raising interest and interaction, developing
intuition to understand this concept. The proposed programme
is developed in the C language. The input parameters and
conditions/situations are to be defined by students to see the
quantitative effects displayed on the screen matched to the scale.
The facility to vary input parameters (keyed every time while
running the programme) will make it interesting and interactive
for students to learn the effect of these parameters, as well as
useful to visualize fabrication parameters in related devices
(CRT, CRT for Thomson’s e/m technique, etc.) for design
engineers. Moreover, the principal mechanism in measuring e/m
in Thomson’s method can be explored.

2. Motion of Uniformly Moving Beam of Electrons in Fields

The discussion of motion of a uniformly moving beam of electrons
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in transverse electric and magnetic fields is followed by a
simulation approach for its visual representation.

2.1a Mechanics behind motion in transverse electric field

Consider a beam of electrons moving with uniform velocity
v=vx x̂  that enters a transverse electric field E=Ey ŷ . The moving
beam of electrons experiences a force F= (–e)(–Ey) ŷ = eEy ŷ .
This force causes an acceleration in the y-direction governed by
Newton’s 2nd law of motion. Thus, the equation of motion for
the electron is:
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Integrating both sides
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The constant of integration  A can be evaluated from the boundary
condition that the electron enters the transverse electric field
with velocity v=vx x̂ (i.e. vy=0) at time t =0.  Substituting vy=0
at t=0,  we get A=0.

Re-writing equation (1), we get
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The constant of integration B can be evaluated from the boun-
dary condition that the electron enters the transverse electric
field with velocity v=vx x̂ (i.e vy=0 ⇒ y=0) at time t=0.
Substituting y=0 at t=0,  we get B=0. Therefore
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Please note: x̂ , ŷ , ẑ  refer
to unit vectors along the
x, y, z directions respec-
tively.
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Instead of a parametric equation for the y coordinate, we are
interested in the equation of coordinates as a functional
dependence. Let l be the length (along x direction) over which
the transverse electric field is present. For an electron with
initial velocity v=vx x̂ , the time t taken to traverse a distance x is
given by t=x/vx. Substituting this in (3), we get
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This equation represents a parabola. When the beam travels the
length x=l in the transverse electric field, it traces a parabolic
path governed by equation (4). When it leaves the transverse field
(for x>l), it travels along the tangent to the parabola till it hits
the screen. Consider the geometry of the path as shown in Figure 1.
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Figure 1. Geometrical
sketch of electron path in
transverse electric field.
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Using 
xv
l

t = (t is the time of flight in the electric field over x=l),
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For acceleration through a potential difference of Va,
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2.1b Simulation of electron motion in an electric field

The purpose of the programme is to design a generalized system
of simulating an electron in an electric field. The programme
inputs the conditions and displays the motion of the electron in
a transverse electric field. The input parameters used in the
programme from the above discussion are as follows:

L → distance between the screen and center of electric field

l → length along x-direction over which electric field is present
i.e. length of the deflecting plates

V → deflection voltage applied across the deflecting plates

d → distance between the deflecting plates

Va → acceleration potential imparting vx velocity to the electron

e → charge of electron

m → mass of electron.

The flow chart for the simulated electron motion in the transverse
electric field is displayed in Figure 2.

When the electron (pixel moving along x-direction in simulation
programme) enters the transverse electric field E=Ey ŷ  it traces
a parabolic path. When it leaves the field, it traces a straight line
tangent to the parabola at that point. The geometrical coordinates

When an electron
enters a transverse

electric field it traces a
parabolic path. When

it leaves the field, it
traces a straight line

tangent to the
parabola at that point.
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Figure 2. Flow chart for electron motion in transverse electric field.
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traced quantitatively in three regions are:

Region I: For x<0

In region I, the electron (pixel in simulated programme) traces
coordinates x=vxt and y=0. With time, it advances along the x-
axis as determined by vx (proportionate delay in simulated pro-
gramme), till x=0.

Region II: For  0<x<l

In region II, the electron traces the coordinates:
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This parametric equation leads to tracing of a parabola in the
region 0<x<l.

Region III: For l<x<L+l/2

In region III, the electron traces a straight line joining the
following two points:
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The flow chart for this simulation  (Figure 2) reveals the systematic
sequence of the steps and the conceptual approach in the
simulation of electron motion in the transverse electric field.

2.2a Mechanics behind motion in transverse magnetic field

Consider a beam of electrons moving with uniform velocity
v=vx x̂  that enters a transverse magnetic field B=–Bz

ẑ . The
moving beam of electrons experiences a Lorentz force F=
e (v× B)=evxBz ŷ . This force supplies the necessary centripetal
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force for circular motion.
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where R represents the radius of the circular orbit. Note that,
v=vx x̂  is the initial velocity of the electron that enters the
magnetic field. It experiences force along the y-direction due to
magnetic field and the resultant velocity v=vx x̂ + vy ŷ . The
work done by a magnetic field is zero and the kinetic energy of
a moving charge is invariant in the magnetic field (only the
direction of velocity changes). Rearranging equation (6)
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Let the transverse magnetic field be present in a small region of
length l along the x-direction. As the uniformly moving electron
enters this region, it traces a section of a circular path and leaves

Figure 3. Geometrical sket-
ch of electron path in trans-
verse magnetic field.

The work done by
a magnetic field is
zero and the
kinetic energy of a
moving charge is
invariant in the
magnetic field.
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the circle along the tangent till it reaches the screen. Figure 3
represents the geometrical sketch of the electron path in a
transverse magnetic field. We have,
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for B to be small, θ will be samll and arc (OB)=l. Therefore
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(here L is the distance between the screen and center of field).
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2.2b Simulation of electron motion in magnetic field

The purpose of the programme is to design a generalized system
for simulating an electron in a magnetic field. The programme
inputs the conditions and displays the motion of the electron in
a transverse magnetic field. The input parameters used in the
programme from the above discussion are as follows:

L → distance between the screen and center of electric field
l → length along x-direction over which magnetic field is present

i.e. length of the deflecting plates
B → transverse magnetic flux density
Va → acceleration potential imparting vx velocity to the electron
e → charge of electron
m → mass of electron.

The flow chart for the simulated electron motion in the transverse
magnetic field is displayed in Figure 4.

When the electron (pixel moving along x-direction in simulation

When an electron
enters a transverse

magnetic field it
traces a circular

path. When it leaves
the field, it traces a
straight line tangent
to the circular arc at

that point.
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Figure 4. Flow chart for
electron motion in trans-
verse magnetic field.
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programme) enters a transverse magnetic field B it traces a circular
path. When it leaves the field, it traces a straight line tangent to
the circular arc at that point. The geometrical coordinates traced
quantitatively in three regions are:

Region I: For x<0

In region I, the electron traces the coordinates x=vxt and y=0.
With time, it advances along the x-axis as determined by vx

(proportionate delay in simulated programme), till x=0.

Region II: For 0<x<l

In region II, the electron traces coordinates:

x=vxt       and      y= tvR x−2 .

This parametric equation leads to tracing of portion of a circle of
radius R=mv/(eB) with center C’(0,0).

Region III: For l<x<L+l/2

In region III, the electron traces a straight line joining the
following two points:
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The flow chart for this simulation (Figure  4) reveals the systematic
sequence of the steps and conceptual approach in the simulation
of electron motion in the transverse magnetic field.
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3. Determination of e/m using Thomson’s method

The combined effect of transverse electric and magnetic fields
can be used to calculate e/m as:

2lLdB
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= .

Here all terms carry the usual meaning as discussed in earlier
sections. This value experimentally calculated by Thomson’s
method is in excellent agreement with the accepted value of
1.759×1011 C/kg.

In simulation module 2.1b, apply deflection voltage (V) and note
down displacement (y). In simulation module 2.2b, adjust the
value of B such that the same displacement occurs in opposite
direction, for fixed value of accelerating potential. The values of
d, l, L, V and B will enable calculation of e/m.

In an alternate way, comparing equations (5) and (8) under
condition of equal and opposite displacement resulting from
equal and opposite forces (electric and magnetic), we get,
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Simplifying the above equation, we get 2
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By substituting the values of E and B required for producing a
null force, for a given value of the accelerating potential Va, one
can calculate e/m from the present simulation programme.

Conclusion

Since the input parameters and conditions/situations are defined
by students to see the quantitative effects displayed on the
screen, this C programme becomes an interesting and interactive
teaching aid. The two simulation modules can be used to
determine e/m using the principle proposed in Thomson’s
method.
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Appendix 1: Statements of electron motion in electric field

#include<stdio.h>

#include<conio.h>
#include<graphics.h>
#include<math.h>
void main(void)

{
char *nsc;
int gd=DETECT,gm;
float slop,y11,d=26,D=112.8,l=23.6,V=0.3, x=0,Va,Vx=1*pow (10,5.50),

y=0,i,j,k,y1,e = 1.6*pow(10,-19),m = 9.11*pow(10,-31),scale,delay1;
printf(“Enter the value of  Distance bet’n Screen & Centre of electric field
D :: “);
scanf(“%f”,&D);

printf(“Enter the value of  Distance bet’n DEFLECTION PLATES l :: “);
scanf(“%f”,&l);
printf(“Enter the value of  ACCELERATING VOLTAGE Va :: “);
scanf(“%f”,&Va);

printf(“Enter the value of  DEFLECTION VOLTAGE V :: “);
scanf(“%f”,&V);
printf(“Enter the value of  DISTANCE BET’N PLATES d :: “);

scanf(“%f”,&d);
Vx= sqrt(2*e*Va/m);
delay1 = 50*Vx/(3*pow(10,8));
initgraph(&gd,&gm,”c:\\tc3\\bgi”);

rectangle(1,1,630,470);
rectangle(2,2,629,469);
rectangle(4,4,627,467);
sprintf(nsc,”d= %f”,d);

outtextxy(10,10,nsc);
sprintf(nsc,”D= %f”,D);
outtextxy(10,20,nsc);
sprintf(nsc,”l= %f”,l);

outtextxy(10,30,nsc);
sprintf(nsc,”V= %f”,V);
outtextxy(10,40,nsc);
sprintf(nsc,”Vx= %f”,Vx);

outtextxy(10,50,nsc);
outtextxy(300,60,”PARABOLA”);
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scale = 400/(D+l/2);
d=d*scale;l=l*scale;D=D*scale;
rectangle(100,250-d,100+l,245-d);
rectangle(100,250+d,100+l,245+d);

rectangle(100+l+D,25,100+l+D+5,450);
for(i=0;i<=21+l+D;i=i+1)
{

if(i>20 && i<(20+l))

{
y1=(V*e*(i-20)*(i-20))/(2*m*d*Vx*Vx);
y11=y1;
putpixel(80+x+i,250+y-y1,12);

}
if(i>=(20+l))
{
slop=((l*D*V)/(2*d*Va)-y11)/(D-l/2);

y1=y11+slop*(i-l-20)+1;
putpixel(80+x+i,250+y-y1,14);
}
delay(50-(int)delay1);

}
outtextxy(410,450,”Press Any key to continue....”);
getch();

}

Appendix 2. Statements of electron motion in magnetic field

#include<stdio.h>
#include<conio.h>
#include<graphics.h>
#include<math.h>

void electron(float x,float y)
{   int i;
for( i=0;i<1;i++)
circle(x,y,i);

}
void main(void)
{
int gd=DETECT,gm;

float i,y,l=30,L=50,D=200,R,THETA,d=30,slop,Va,delay1,x1,y1,x2,y2;
float m=9.11*pow(10,-31),e=1.6*pow(10,-19),B=1.5*pow(10,-4),v =
1*pow(10,10);
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printf(“Enter the MAGNETIC FLUX B (in GAUSS)::”);
scanf(“%f”,&B);
B=B*pow(10,-11);
printf(“Enter the value of L ::”);

scanf(“%f”,&L);
printf(“Enter the value of l ::”);
scanf(“%f”,&l);
printf(“Enter the value of ACCELERATING VOLTAGE    Va::”);

scanf(“%f”,&L);
printf(“R= %f\n v = %f\n”,R,v);
getch();
v= abs(sqrt((2*e*Va)/m));

printf(“R= %f\n v = %f\n”,R,v);
getch();
R = m*v/(B*e);
printf(“R= %f\n v = %f\n”,R,v);

getch();
delay1 = 50*v/(3*pow(10,8));
initgraph(&gd,&gm,”c:\\tc3\\bgi”);
rectangle(100,250-d,100+l,245-d);

rectangle(100,250+d,100+l,245+d);
rectangle(100+l+D,25,100+l+D+5,450);
for(i=0;i<=l;i++)

{
y = abs(sqrt(abs((R*R)-(i*i))));
putpixel(100+i,250+R-y,14);
delay(50-(int)delay1);

}
x1= l;x2=L+l/2;y1=abs(sqrt(abs(R*R-l*l)));y2=l*L*B*abs(sqrt(e/
(2*m*Va)));
slop = (y2-y1)/(x2-x1);

for(i=0;i<D;i++)
{
putpixel(100+l+i,250+R-y+(i*slop),15);
 delay(50-(int)delay1);

 }
outtextxy(400,440,”Press any key to continue ...”);
getch();
}


