Classroom

In this section of Resonance, we invite readers to pose questions likely to be raised in a classroom situation. We may suggest strategies for dealing with them, or invite responses, or both. "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science.

Simulation of Electron M otion in Fields An Interactive T eaching Aid

1. Introduction

While teaching the behaviour of a uniformly moving beam of electrons in electric and/or magnetic field, a mere theoretical discussion does not impart a complete understanding. The present work aims at raising interest and interaction, developing intuition to understand this concept. T he proposed programme is developed in the C language. The input parameters and conditions/situations are to be defined by students to see the quantitativeeffects displayed on the screen matched to the scale. The facility to vary input parameters (keyed every time while running theprogramme) will makeit interesting and interactive for students to learn the effect of these parameters, as well as useful to visualize fabrication parameters in related devices (CRT, CRT for Thomson's e/m technique, etc.) for design engineers. M oreover, theprincipal mechanism in measuringe/m in Thomson's method can be explored.

2. M otion of Uniformly M oving Beam of Electrons in Fields

Thediscussion of motion of a uniformly moving beam of electrons

S W Anwane and N S Choubey\# Department of Physics Shivaji Education Society Amravati's Science College Congress Nagar, Nagpur 440 012, India Email:
swanwane@rediffmail.com
\#Department of Computer Science
Anuradha Engineering College
Chikhli Dist
Buldana 443201, India.

Keywords

Charged particle in electric and magnetic field.

Pleasenote: $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ refer to unit vectors along the x, y, z directions respectively.
in transverse electric and magnetic fields is followed by a simulation approach for its visual representation.

2.1a M echanics behind motion in transverse electric field

Consider a beam of electrons moving with uniform velocity $\mathbf{v}=v_{x} \hat{\mathbf{x}}$ that enters a transverseelectric field $\mathbf{E}=\mathrm{E}_{\mathrm{y}} \hat{\mathbf{y}}$. Themoving beam of electrons experiences a force $\mathbf{F}=(-e)\left(-E_{y}\right) \hat{\mathbf{y}}=e E_{y} \hat{\mathbf{y}}$. This force causes an acceleration in they-direction governed by Newton's 2nd law of motion. Thus, the equation of motion for the electron is:

$$
\begin{aligned}
& \mathbf{F}=m \mathbf{a} \Rightarrow e E_{y} \hat{\mathbf{y}}=m a \hat{y} \hat{\mathbf{y}} \Rightarrow \\
& a_{y}=\frac{d v_{y}}{d t}=\frac{e}{m} E_{y} \Rightarrow \\
& d v_{y}=\frac{e}{m} E_{y} d t .
\end{aligned}
$$

Integrating both sides

$$
\begin{equation*}
v_{y}=\frac{e}{m} E_{y} t+A . \tag{1}
\end{equation*}
$$

Theconstant of integration A can beevaluated from theboundary condition that the electron enters the transverse electric field with vel ocity $\mathbf{v}=v_{x} \hat{\mathbf{x}}\left(i . e . v_{y}=0\right)$ at timet $=0$. Substituting $v_{y}=0$ at $\mathrm{t}=0$, we get $\mathrm{A}=0$.

Re-writing equation (1), we get

$$
\begin{align*}
& \frac{d y}{d t}=\frac{e}{m} E_{y} t \\
& y=\frac{e E_{y} t^{2}}{2 m}+B . \tag{2}
\end{align*}
$$

The constant of integration B can be evaluated from the boundary condition that the electron enters the transverse electric field with velocity $\mathbf{v}=v_{x} \hat{\mathbf{x}}$ (i.e $v_{y}=0 \Rightarrow \mathrm{y}=0$) at time $\mathrm{t}=0$. Substituting $\mathrm{y}=0$ at $\mathrm{t}=0$, we get $\mathrm{B}=0$. Therefore

$$
\begin{equation*}
y=\frac{e E_{y} t^{2}}{2 m} . \tag{3}
\end{equation*}
$$

Instead of a parametric equation for the y coordinate, we are interested in the equation of coordinates as a functional dependence. L et I be the length (along x direction) over which the transverse electric field is present. For an electron with initial velocity $\mathbf{v}=v_{x} \hat{\mathbf{x}}$, the timet taken to traverse a distancex is given by $t=x / v_{x}$. Substituting this in (3), we get

$$
\begin{equation*}
y=\frac{e E_{y} x^{2}}{2 m v_{x}^{2}} \quad \text { or } \quad y=\left(\frac{e E_{y}}{2 m v_{x}^{2}}\right) x^{2} . \tag{4}
\end{equation*}
$$

This equation represents a parabola. When the beam travels the length $x=I$ in the transverse electric field, it traces a parabolic path governed by equation (4). W hen it leaves thetransversefield (for $x>l$), it travels along the tangent to the parabola till it hits the screen. Consider the geometry of the path as shown in Figure 1.

$$
\begin{aligned}
& \mathrm{y}=\mathrm{L} \tan \theta, \text { and } \tan \theta=\frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{v}_{\mathrm{x}}} . \\
& \mathrm{y}=\mathrm{L}\left(\frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{v}_{\mathrm{x}}}\right)=\mathrm{L}\left(\frac{\mathrm{eE} \mathrm{y}_{\mathrm{t}}}{\mathrm{mv}}\right) .
\end{aligned}
$$

Figure 1. Geometrical sketch of electron path in transverse electric field.

Using $\mathrm{t}=\frac{\mathrm{l}}{\mathrm{v}_{\mathrm{x}}}$ (tisthetime of flight in the electric fiel over $\left.\mathrm{x}=\mathrm{I}\right)$,

$$
y=L\left(\frac{e E_{\gamma} \mathrm{l}}{\mathrm{mv}}\right)=\frac{\mathrm{elL} \mathrm{E}_{\mathrm{x}}^{2}}{\mathrm{mv}} .
$$

For acceleration through a potential difference of V_{a}, $\frac{1}{2} m v_{x}^{2}=e V_{a}$; and $E_{y}=\frac{V}{d} \cdot$ Therefore

$$
\begin{equation*}
y=\frac{I L V}{2 V_{a} d} . \tag{5}
\end{equation*}
$$

2.1b Simulation of electron motion in an electric field

The purpose of the programme is to design a generalized system of simulating an electron in an electric field. The programme inputs the conditions and displays the motion of the electron in a transverse electric field. The input parameters used in the programme from the above discussion are as follows:
$L \rightarrow$ distance between the screen and center of el ectric field
$\mathrm{I} \rightarrow$ length al ong x -direction over which electric field is present i.e. length of the deflecting plates
$\mathrm{V} \rightarrow$ deflection voltage applied across the deflecting plates
$d \rightarrow$ distance between the deflecting plates
$\mathrm{V}_{\mathrm{a}} \rightarrow$ acceleration potential imparting v_{x} velocity to the electron
$\mathrm{e} \rightarrow$ charge of electron

When an electron enters a transverse electric field it traces a parabolic path. When it leaves the field, it traces a straight line tangent to the parabola at that point.
$\mathrm{m} \rightarrow$ mass of electron.
Theflow chart for thesimulated electron motion in thetransverse electric field is di splayed in Figure 2.

When theelectron (pixel moving al ong x-direction in simulation programme) enters the transverse electric field $\mathbf{E}=\mathrm{E}_{\mathrm{y}} \hat{\mathbf{y}}$ it traces a parabolic path. When it leaves thefield, it traces a straight line tangent to theparabolaat that point. Thegeometrical coordinates

Figure 2. Flow chart for electron motion in transverse electric field.
traced quantitatively in threeregions are:
Region I: F or $\mathrm{x}<0$
In region I, the el ectron (pixel in simulated programme) traces coordinates $x=v_{x} t$ and $y=0$. With time, it advances al ong the $x-$ axis as determined by v_{x} (proportionate delay in simulated programme), till $x=0$.

Region II: For $0<x<1$
In region II, the electron traces the coordinates:
$x=v_{x} t$ and $y=\left(\frac{e V}{2 m v_{x}^{2} d}\right) x^{2}$.
This parametric equation leads to tracing of a parabola in the region $0<x<1$.

Region III: F or $\mathrm{l}<\mathrm{x}<\mathrm{L}+\mid / 2$
In region III, the electron traces a straight line joining the following two points:
$P_{1} \equiv\left(x_{1}=1, y_{1}=\frac{e V I^{2}}{2 m v_{x}^{2 d}}\right)$ and $P_{2} \equiv\left(x_{2}=L+\frac{1}{2}, y_{2}=\frac{I L V}{2 d V_{a}}\right)$.
Slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\left(\frac{I L V}{2 d V_{a}}-\frac{e V I^{2}}{2 m v_{x}^{2} d}\right)}{L-\frac{1}{2}}$.
Theflow chart for this simulation (Figure 2) revealsthesystematic sequence of the steps and the conceptual approach in the simulation of electron motion in the transverse electric field.

2.2a M echanics behind motion in transverse magnetic field

Consider a beam of electrons moving with uniform velocity $\mathbf{v}=\mathrm{v}_{\mathrm{x}} \hat{\mathbf{x}}$ that enters a transverse magnetic field $\mathbf{B}=-\mathrm{B}_{z} \hat{\mathbf{z}}$. The moving beam of electrons experiences a Lorentz force $\mathbf{F}=$ $e(\mathbf{v} \times \mathbf{B})=\mathrm{ev}_{\mathrm{x}} \mathrm{B}_{\mathrm{z}} \hat{\mathbf{y}}$. This force supplies the necessary centripetal

forcefor circular motion.

$$
\begin{equation*}
e v B_{z}=\frac{m v^{2}}{R}, \tag{6}
\end{equation*}
$$

where R represents the radius of the circular orbit. N ote that, $\mathbf{v}=\mathrm{v}_{\mathrm{x}} \hat{\mathbf{x}}$ is the initial velocity of the electron that enters the magnetic field. It experiences force al ong they-direction due to magnetic field and the resultant velocity $\mathbf{v}=v_{x} \hat{\mathbf{x}}+v_{y} \hat{\mathbf{y}}$. The work done by a magnetic field is zero and the kinetic energy of a moving charge is invariant in the magnetic field (only the direction of velocity changes). Rearranging equation (6)

$$
\begin{align*}
& v=\frac{B_{2} R e}{m} \Rightarrow \\
& R=\frac{m v}{e B_{z}} . \tag{7}
\end{align*}
$$

L et the transverse magnetic field be present in a small region of length I al ong thex-direction. Astheuniformly moving electron enters this region, it traces a section of a circular path and leaves

Figure 3. Geometrical sketch of electron path in transverse magnetic field.

The work done by a magnetic field is zero and the kinetic energy of a moving charge is invariant in the magnetic field.
the circle al ong the tangent till it reaches the screen．Figure 3 represents the geometrical sketch of the electron path in a transverse magnetic field．We have，
$\theta=\frac{\operatorname{arc}(O B)}{R}=\frac{I(D C)}{1\left(O^{\prime} D\right)}$
for \mathbf{B} to be small，θ will be samll and $\operatorname{arc}(O B)=I$ ．Therefore
$\frac{\mathrm{I}}{\mathrm{R}}=\frac{\mathrm{y}}{\mathrm{L}} \Rightarrow \mathrm{y}=\frac{\mathrm{IL}}{\mathrm{R}}$ ．Substituting $\mathrm{R}=\frac{\mathrm{mv}}{e \mathrm{~B}}$ ，

$$
y=\frac{\mathrm{ILeB}}{\mathrm{mv}} ;
$$

（hereL isthedistancebetween thescreen and center of field）．
$\mathrm{eV}_{\mathrm{a}}=1 / 2 \mathrm{~m} v^{2} \Rightarrow \mathrm{v}=\sqrt{\frac{2 \mathrm{eV}_{\mathrm{a}}}{\mathrm{m}}}$. Therefore

$$
\begin{equation*}
y=I L B \sqrt{\frac{e}{2 m V_{\mathrm{a}}}} . \tag{8}
\end{equation*}
$$

2．2b S imulation of electron motion in magnetic field

The purpose of the programme is to design a generalized system for simulating an electron in a magnetic field．The programme inputs the conditions and displays the motion of the electron in a transverse magnetic field．The input parameters used in the programme from the above discussion are as follows：
$\mathrm{L} \rightarrow$ distance between the screen and center of electric field
$I \rightarrow$ length al ongx－direction over which magnetic field is present

When an electron enters a transverse magnetic field it traces a circular path．When it leaves the field，it traces a straight line tangent to the circular arc at that point．
i．e．length of the deflecting plates
B \rightarrow transverse magnetic flux density
$\mathrm{V}_{\mathrm{a}} \rightarrow$ acceleration potential imparting v_{x} velocity to the electron
$\mathrm{e} \rightarrow$ charge of electron
$\mathrm{m} \rightarrow$ mass of electron．
Theflow chart for thesimulated electron motion in thetransverse magnetic field is displayed in F igure 4.

When theelectron（pixel moving alongx－direction in simulation

Figure 4. Flow chart for electron motion in transverse magnetic field.
programme）enters atransversemagnetic field B it tracesacircular path．When it leaves the field，it traces a straight line tangent to thecircular arc at that point．T hegeometrical coordinatestraced quantitatively in threeregionsare：

Region I：F or $x<0$

In region I ，the el ectron traces the coordinates $x=v_{x} t$ and $y=0$ ． With time，it advances along the x－axis as determined by v_{x} （proportionate delay in simulated programme），till $x=0$ ．

Region II：F or $0<x<1$
In region II，theelectron traces coordinates：
$x=v_{x} t \quad$ and $\quad y=\sqrt{R^{2}-v_{x} t}$.

This parametric equation leads to tracing of portion of a circle of radius $R=m v /(e B)$ with center $C^{\prime}(0,0)$ ．

Region III：F or $1<x<L+\mid / 2$
In region III，the electron traces a straight line joining the following two points：
$P_{1} \equiv\left(x_{1}=I, y_{1}=\sqrt{R^{2}-I^{2}}\right)$ and
$P_{2} \equiv\left(x_{2}=L+\frac{1}{2}, y_{2}=I L B \sqrt{\frac{\mathrm{e}}{2 m V_{a}}}\right)$.

Slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\left(I L B \sqrt{\frac{e}{2 m V_{a}}}-\sqrt{R^{2}-I^{2}}\right)}{L-\frac{I}{2}}$ ．

Theflow chart for thissimulation（Figure 4）reveals thesystematic sequence of thesteps and conceptual approach in thesimulation of electron motion in the transverse magnetic field．

3. Determination of e/m using T homson's method

The combined effect of transverse electric and magnetic fields can be used to calculate e/m as:
$\frac{e}{m}=\frac{V D}{I L d B^{2}}$.
H ere all terms carry the usual meaning as discussed in earlier sections. This value experimentally calculated by Thomson's method is in excellent agreement with the accepted value of $1.759 \times 10^{11} \mathrm{C} / \mathrm{kg}$.

In simulation module 2.1b, apply deflection voltage (V) and note down displacement (y). In simulation module 2.2b, adjust the value of B such that the same displacement occurs in opposite direction, for fixed val ue of accelerating potential. The values of $\mathrm{d}, \mathrm{I}, \mathrm{L}, \mathrm{V}$ and B will enable calculation of e/m.

In an alternate way, comparing equations (5) and (8) under condition of equal and opposite displacement resulting from equal and opposite forces (electric and magnetic), we get,
$\frac{I L V}{2 V_{a} d}=I L B \sqrt{\frac{e}{2 m V_{a}}}$.
Simplifying theabove equation, weget $\frac{\mathrm{e}}{\mathrm{m}}=\frac{\mathrm{E}^{2}}{2 V_{\mathrm{a}} \mathrm{B}^{2}}$.
By substituting the values of E and B required for producing a null force, for a given value of the accelerating potential V_{a}, one can calculate e/m from the present simulation programme.

Conclusion

Sincetheinput parameters and conditions/situations aredefined by students to see the quantitative effects displayed on the screen, thisC programmebecomes an interesting and interactive teaching aid. The two simulation modules can be used to determine e/m using the principle proposed in Thomson's method.

Appendix 1: Statements of electron motion in electric field

```
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
#include<math.h>
void main(void)
{
char *nsc;
int gd=DETECT,gm;
float slop,y11,d=26,D=112.8,l=23.6,V=0.3, x=0,Va,Vx=1*pow (10,5.50),
y=0,i,j,k,y1,e = 1.6*pow(10,-19),m = 9.11*pow(10,-31),scale,delay1;
printf("Enter the value of Distance bet'n Screen & Centre of electric field
D :: ");
scanf("%f",&D);
printf("Enter the value of Distance bet'n DEFLECTION PLATES 1 :: ");
scanf("%f",&l);
printf("Enter the value of ACCELERATING VOLTAGE Va :: ");
scanf("%f",&Va);
printf("Enter the value of DEFLECTION VOLTAGE V :: ");
scanf("%f",&V);
printf("Enter the value of DISTANCE BET'N PLATES d :: ");
scanf("%f",&d);
Vx= sqrt(2*e*Va/m);
delay1 = 50*Vx/(3*pow (10,8));
initgraph(&gd,&gm,"c:\\tc3\\bgi");
rectangle(1,1,630,470);
rectangle(2,2,629,469);
rectangle(4,4,627,467);
sprintf(nsc,"d= %f",d);
outtextxy(10,10,nsc);
sprintf(nsc,"D= %f",D);
outtextxy(10,20,nsc);
sprintf(nsc,"l= %f",l);
outtextxy(10,30,nsc);
sprintf(nsc,"V= %f",V);
outtextxy(10,40,nsc);
sprintf(nsc,"Vx= %f",Vx);
outtextxy(10,50,nsc);
outtextxy(300,60,"PARABOLA");
```

```
scale = 400/(D+1/2);
d=d*scale;l=1*scale;D=D*scale;
rectangle(100,250-d,100+1,245-d);
rectangle(100,250+d,100+1,245+d);
rectangle(100+l+D,25,100+l+D+5,450);
for(i=0;i<=21+l+D;i=i+1)
{
    if(i>20 && i}<(20+1)
    {
    yl=(V*e*(i-20)*(i-20))/(2*m*d*Vx*Vx);
    y11=y1;
    putpixel(80+x+i,250+y-y1,12);
    }
    if(i>=(20+1))
    {
    slop=((1*D*V)/(2*d*Va)-y11)/(D-1/2);
    y1=y11+slop*(i-1-20)+1;
    putpixel(80+x+i,250+y-y1,14);
    }
    delay(50-(int)delay1);
}
outtextxy(410,450,"Press Any key to continue....");
getch();
}
```


Appendix 2. Statements of electron motion in magnetic field

```
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
#include<math.h>
void electron(float x,float y)
{ int i;
for( i=0;i<1;i++)
circle(x,y,i);
}
void main(void)
{
int gd=DETECT,gm;
float i,y,l=30,L=50,D=200,R,THETA,d=30,slop,Va,delay1,x1,y1,x2,y2;
float m=9.11*\operatorname{pow}(10,-31),e=1.6*\operatorname{pow}(10,-19),B=1.5*\operatorname{pow}(10,-4),v=
1*pow(10,10);
```

```
printf("Enter the MAGNETIC FLUX B (in GAUSS)::");
scanf("%f",&B);
B=B*pow(10,-11);
printf("Enter the value of L ::");
scanf("%f",&L);
printf("Enter the value of 1 ::");
scanf("%f",&1);
printf("Enter the value of ACCELERATING VOLTAGE Va::");
scanf("%f",&L);
printf("R= %fln v = %fln",R,v);
getch();
v= abs(sqrt((2*e*Va)/m));
printf("R= %fln v = %fln",R,v);
getch();
R = m*v/(B*e);
printf("R= %fln v = %fln",R,v);
getch();
delay1 = 50*v/(3*pow(10,8));
initgraph(&gd,&gm,"c:\\tc3\\bgi");
rectangle(100,250-d,100+1,245-d);
rectangle(100,250+d,100+1,245+d);
rectangle(100+1+D,25,100+1+D+5,450);
for(i=0;i<=1;i++)
{
y = abs(sqrt(abs((R*R)-(i*i)));
putpixel(100+i,250+R-y,14);
delay(50-(int)delay1);
}
x1= 1;x2=L+1/2;y1=abs(sqrt(abs(R*R-1*1)));y2=1*L*B*abs(sqrt(e/
(2*m*Va)));
slop = (y2-y1)/(x2-x1);
for(i=0;i<D;i++)
{
putpixel(100+l+i,250+R-y+(i*slop),15);
    delay(50-(int)delay1);
}
outtextxy(400,440,'Press any key to continue ...");
getch();
}
```

