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equation of state in Wesson's theory
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Abstract Exact solution for a homogeneous cosmological
model in 5D space-time-mass gravity theory proposed by
Wesson (Astron. Astrophys. I l9:145, l98jl) is obtained by
assuming the time-dependent equation of state. The behav-

ior of the solution is discussed for the two cases k < 0
and k:0. It is found that the observed constancy of the

rest mass of an isolated particle in the present era may

be interpreted as a consequence of the decreasing rate of
change of rest mass with time. Moreover, a spontaneous

cornpactification{ike phenomenon of an extra dimension
takes place in the case of k : 0. It is also found that with de-

crease in extra space the observable three dimensional space

entropy incrcases, thus accounting for the Iarge value of en-

tropy observable at present.

Keywords Cosmology. Wesson's theory . Variable rest

mass . Time dependant equation of state

l lntroduction

Wesson (1983) ploposed a 5D space-time-rnass gravity the-

ory in which the rest mass of a typical particle may change
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with time. Wesson introducad the fifth coordinatc .ta =
($)rr (c is velocity of light and zr is the resr mass) be-

sides lhe 4D space-time coordinates and exrended Einstein's
general relativity from the 4D space-rime ro the 5D space

time-mass directly. It is useful to find and investigate solu-

tions ol lhe 6eld equations in lhe 5D space-time-mass gra\-
ity theory to understand the mcaning of the titih dimensional
subspace and provide predictions. which can be used to test

the theory itself. Several authors, have, recently obtained cx

act solutions in Wesson's theory with or without matter dis-
tribution (Chatterjee 1986, 1987; Fukui 1987; GrOn 1988;

Chatterjee et al. 1990; Banerjee et al. 1990b; Berman and

Som 1993). But exact solutions with time-dependent equa-

tion of state are not much known in the literature. Haji and

Boutros (1991) obtained solutions for an LRS Bianchi-I
model with time dependant equation of state while Manna

and Bhui (1994) presented higher dimensional cosmologi-
cal model with a time dependenl equation of state. Recently
Bhui et al. (2005) has generalized rhe work of Haji and

Boutros ( l99l t using Kaluza-Klein metric.
Following the work of Bhui et al. (2005) wc nnd. in

this paper. exact solutions oi the lield eqLlations ol Wesson

(1983) spacetime-mass gravity theory w,th a time depen-

dent equation of state p = a(t)p. Physical behaviors ol the

solutions are also discussed.

2 Field equations

Following Grpn (1988) we take the line element in the form

Dz
tlt2=drz _ __ll_ 14r: - d.y2 I tlz.1) _ A)dnt:. ilr

r-1 --

Q sy,i,g.,
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where ,t characteizes the spatial curvature. Unlike Wesson,

the iifth coordinate is taken to be space-like and the metric
coeff,cients are assumed to be functions ol'time only.

We consider Einstein's equations

1Rtr ;BitR-Ti1 (i. j-0. 1.2.-1.4). t2)

*har" ,ha 
"n"rgy-.omenlu 

rn lcDsor ',1;/ lLJr a ncrlccl lluid iJ

as suggested by GrOn ( lg88)

Tii:diag(p,-p,-p,-p,-p . (3)

Here p is the matter density, p is isotopic pressure and pa

is the pressure that would result if the fluid existed in a five
dimensional space.

In the case ofcomoving fluid the field equations (2) with
energy momentum tensor (3) lead to the equations

R2 +t< rii r

o2 + *:Y' (4)

2ii nz+t 2hA A, l- l-: r, (5)RR2RAA
ii R2 +t 1

R+i:3p4, (6)

where dot (.) denotes derivative with respect to time and p4

is the pressure that would result if the fluid existed in a five
dimensional space time as it is possible in the Kaluza-Klein
models. However according to Wesson's theory the fifth di-
mension is essentially a parametrisation ofrest mass and we

must have p4 = 0. Equation (6) then reduces to

ii k2 +*:, -- =0. (7)RRI
which gives

R2 = Kr * K2t - kt2, (8)

where Kl and K2 are arbitrary integrating constants.

Following Gr6n (1988) one can calculate from geodesic

considerations the variation of rest mass with time as

-1dm P^ I --, P:1 
'z

-=+tK' ':l (9)
dt A, l A,)

where P^ (a constant oI motion) is the conjugale momenlum
and K is an arbitrary constant.

3 Solutions of field equations

3.1 Case 1 (& < 0)

In this case, one can adjust ft and ,(2 such that (8) becomes

a Perfect square, we get

R: r. (10)

Assuming the time dependent equation oI state

(11)

From (4) and (5) we get a differential equation of the form

2ii rlir'tr RA A

o *l; )(3d 
ttt RA{lq+2)+- =0 {l2r

From (10) and ( l2) we obtain

t2 A + r13a + 2)ri + (3d + l)(t + r)A = o.

, //. + I \@(r):crr._l * l, ( r4)

where c1 is an arbitrary constant of integration.
Putting this value ofo(t) in (13) we get

,rl.[.r,,,t*r ("),]o+f:.,,^-il^:. 
_- (15)

whose first integral is given by

f ,., /k+r\ It'A ll3c1t^''-{ , lrlA:t1.
L \X,/]

(13)

Using the condition of exactness lbr the above linear equa-

tion and after a straightforward calculation we get

where c2 is an arbitrary integrating constants.
From (7) and (10) we get t: -1. Using this in ( l6) and

( l6)

where ca is an arbitrary integrating constant.

This solution (17) is similar to the solution obtained by

Bhui et al. (2005).

Now we consider c2 
= -c2 then A can be put in the form

A: srs3"t/t -:L. (t8)- 3ct

Using (18) in the field equations it also follows that

9ct
( r9)

solving for A we get

1- c2 , -^ -zt 11r

Jcl
( t7)

il -!L e 3.1/! - 11'

9cl
D = dltlD

14[t'L e-r! r// _ l]
(20)

For physical validity i.e. for matter density to be nonnega-
tive, one has to choose integration constants c1, c2 and c1 to

be positive and

IL, 1.
3crcr

and

Q springet

(2D
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3cr
'u - 1n1-!:-I'

here cl is related to the mass density of the system. When
cl = 0, the mass density vanishes. We may be assured that

the matter density is nonnegative. It follows from cqualion
(19) that the integration constants cl and c2 will always bc
positive. We discuss the dynamical behaviors ol thc model.
The four volume V = R3A starts liom zero at t = 0 and

vanishes at

wherc r/1 is an arbitrary constant of integration.
Now we consider d2= -dz th (29) can be pur in the

lbrm

A - ll ar"t'r'r"''' -'1t I (30)t't. I bdll
As / --+ oo, A -+ 0. Hence the solution is amenable ro di
mensional reduction.

Now using (30) in the Reld equations we get

9dt

Equation (28) gives

^- il#+d',3d,tt't'),

and

4ts/21_4L e-3,1i I tt/, - lf

(22)

(29)

(3 t)

( l2)

(33)

(34)

Q sp.,,g".

It is interesting to note that the extra scale factors start-
ing tiom an inlinite cxpansion at the big bang reduces to
Planckian length at the same point of time ,0. It has been

conjectured (Sahdev 1984) that certain quantum gravity ef-
fects stabilized the extra space at the Planckian length and

the cosmology of the universe evolves according to FRW
model with the space remaining the silent spectator from
this point on.

Using (18) in (9) we get
l-rr''ltl
Ir:r: ,r..] '

9dt

dm

dt lcre\ - fillr2{cr"\ - 71, - 411

As , --+ oo, f; approaches to a constant value proportional

to P- provided K (ca - *) > P^.

3.2 Case 2 (t = 0)

In this case, for ft :0, K2 + 0 one can calculate from (8),

the scale factor R(r) as

R=JKr,. (24)

Using (24) in (12), we get linear differential equarion of rhe

form

4t2 A +kl2 +3olA + [3q - l]A = o. (2s)

From the conditiqn of exactness of the above linear differ-
ential equation one can calculate o(1) as

d(t):l+^ft/2, Q6)

where dy is an arbitrary constant of integration.
Substituting the value of cv() from (26) in (25), we get

4t2 A +2t(5 + 3dtt-tl21A 1 12 a 3a.,t-t/21A :0, (z't)

whose first integral is given by

4t2 A +[2t +6dttt/2]A=.12, (28)

where d2 is an arbitrary constanl of integrarion.

To ensure the matter density to be nonnegative ir follows
from (31) that integration constants d1, d2 and d3 will be

always positive and

d.- > l.
6d1d3

In this case our solution is the generalizarion of the solution
obtained by Manna and Bhui (1994).

4 Conclusion

We have presented here the five dimensional world as de
fined according to the Wesson's theory of gravitation with
an energy momentum tensor containing matter density p,
isotropic pressure p and pressure pa that would resulr if rhe

fluid existed in a five dimensional space. From the solurion
of the metric coefficient A, it follows that over rime A ap-
proaches zero, giving rise to phenomenon of the dimension
reduction for an expanding models. From the expression for
the mass density and pressure, it is shown that they are in
general positive and vanishes at infinity with an initial sin-
gularityatr:0.

From the energy conservation relation we get from (3)

4[;he 3(/ttt'z - l)

RA
i+3(p+ptR+p/,:0.

Since n - R-3 the efttctive fbur-dimensional specific
entropy E will in general increase at a rare (Banerjee er al.
1990a)

P^
(23)

.^, I I d\p/nt pdtt/n)1
KTL dr dt I
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wherc

5:o+
I I d'r: 
-li 

l3(p+r)-1. (J5)nKT l' 'Rl
which in view of (9) yields

E = -=-l -!l. (36)
nKT I A )

From (36), we thus arrive at a very important relation which
needs further interpretation in higher-dimensional physics.

It may be conjectured that besides the well-understood
mechanism ofentropy increases due to dissipative phenom-
enon like viscosity, here the procass of dimensional reduc-
tion also produces entopy in the fourth dimension, which
may be enormous if A decreases quickly.

From (25) one can calculate the va{iation of rest mass
thoroughly discussed by GrOn (1988). For this reason we
have not given the explicit expression for ff in our case. It
also follows from (25) that, in an open universe k : - 1, #
becomes constant for large value of r. If one takes the value
of this constant as either zero or extremely small then ob-
served constancy of rest mass of an isolated particle in the
present era may then be interpreted as a consequences of
decreasing rate of change of rest mass with time.

In case ofclosed universe k :0, A + 0 as t + rc.whioh
gives the dimensional reduction phenomenon_ In this sce
nario the length oi the 6tih dimensional subspace shrinks
while the normal dimension expands. In this case one finds
thtrt the 5D universe of Wesson enters in the usual 4D uni,
verse alter a long period of expansion with the mafter con-
Ient as radiation. Here the process of dimensional reduction
also produces entropy in rhe higher dimension, which may
be enormous if A decreases quickly.
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